Плоскости двух сечений цилиндра, проходящих через одну образующую, образуют угол 60 градусов. найдите площади боковой поверхности цилиндра, если площади сечений равны 11 и 13 см
СОВЕРШЕННО ДРУГАЯ задача :) Дана окружность, в ней из одной точки проведены две хорды под углом 60°, их длины 11 и 13, надо найти длину окружности. По теореме косинусов легко сосчитать, что третья сторона (в квадрате) вписанного треугольника, сторонами которого являются эти хорды, равна 11^2 + 13^2 - 2*11*13*(1/2) = 147 = 49*3; то есть третья сторона равна 7√3; По теореме синусов 7√3 = 2Rsin(60°) = R√3; то есть R = 7; Длина окружности с таким радиусом равна 14π; ТЕПЕРЬ можно перейти к ЭТОЙ задаче и сразу написать ответ 14π; (А почему? :) )
а) Постройте плоскость, проходящую через точки K, L и М - для этого надо просто соединить эти точки.
б) Найдите угол между этой плоскостью и плоскостью основания АВС. Продлим отрезки КМ и KL до пересечения с плоскостью АВС. Для этого достаточно продлить стороны АС и АВ. Точки пресечения - это Д и Е. Примем длину отрезка АК за 1. Из треугольника АКД отрезок АД = 1 / tg 60 = 1 / √3. Аналогично АЕ = 1 / tg 45 = = 1 / 1 = 1. Угол ЕАД равен 60 градусов (по заданию). По теореме косинусов Находим гипотенузы в треугольниках АКД и АКЕ. КЕ = √(1²+1²) = √2 (острые углы по 45 градусов). Теперь определены 3 стороны в треугольнике КЕД, угол наклона которого к плоскости АВС надо найти. Для этого двугранный угол между основой и треугольником КДЕ надо рассечь плоскостью, перпендикулярной их линии пересечения ЕД. Находим высоты в треугольниках АЕД и КЕД по формуле: АЕ ДЕ АД p 2p S = 1 0.8694729 0.5773503 1.2234116 2.446823135 0.25 haе hде hад 0.5 0.57506 0.86603
КЕ ДЕ КД p 2p S = 1.4142136 0.869473 1.154701 1.719194 3.43839 0.501492 hке hде hкд 0.7092 1.15356 0.86861. Отношение высот hде и hде - это косинус искомого угла: cos α = 0.57506 / 1.15356 = 0.498510913. ответ: α = 1.048916149 радиан = 60.09846842°.
Прикладываю рисунок* Так как угол ADC=45 градусам по условию, то угол BCD=180-45=135 по свойству. Рассмотрим треугольник CHD. В нем угол CHD равен 90 градусов, так как CH-высота. Угол ADC равен 45 градусам по условию, а угол CHD=180-90-45=45 градусам. Соответственно, этот треугольник равнобедренный - HD=CH. Рассмотрим фигуру ABCH. В ней углы ABC и HAB равны 90 градусов, так как трапеция прямоугольная. Угол AHC=90 градусов, так как CH-высота трапеции. Угол BCH=135-45=90 градусов. Следовательно ABCH - прямоугольник. По условию задачи BC=27 см, значит и AH=BC=27 см, так как это прямоугольник. Из этого можно найти HD. AD равно 33 см по условию, AH=27, поэтому HD=33-27=6 см. Так как треугольник CHD - равнобедренный, в нем HD=CH=6 см. Высота найдена, можно искать площадь трапеции. Sтрапеции=27+33/2 * 6 = 180 см^2 ответ:180 см^2
По теореме косинусов легко сосчитать, что третья сторона (в квадрате) вписанного треугольника, сторонами которого являются эти хорды, равна 11^2 + 13^2 - 2*11*13*(1/2) = 147 = 49*3; то есть третья сторона равна 7√3;
По теореме синусов 7√3 = 2Rsin(60°) = R√3; то есть R = 7;
Длина окружности с таким радиусом равна 14π;
ТЕПЕРЬ можно перейти к ЭТОЙ задаче и сразу написать ответ 14π;
(А почему? :) )