Вот........
ЭТА ЗАДАЧА ПО ГЕОМЕТРИИ КАК ДОКАЗАТЬ
ТУТ ПИШЕМ ПРЯМО ЧТО МЫ ДЕЛАЕМ А ПОТОМ И РЕШАЕМ.
Если не понятен почерк вот решение
Пусть К — точка пересечения биссектрис, КН — высота треугольника АКВ, MN — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они прямоугольные, углы HAK и KAN равны, поскольку АК — биссектриса, сторона AK — общая, следовательно, треугольники равны. Тогда KN=KH=4. Аналогично, равны треугольники BKH и BKM, откуда MK=KH=4.
Найдём площадь параллелограмма как произведение основания на высоту.
S=AD*MN=AD*(MK+KN)=7*(4+4)=7*8=56
ЧТД
ответ:56см
Первый признак равенства треугольников:
"Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны." (по двум сторонам и углу между ними)
Второй признак равенства треугольников:
"Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны". (по стороне и двум прилежащим к ней углам)
Третий признак равенства треугольников:
"Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны." (по трем сторонам)
Вертикальные углы равны.
В 4)нет обозначений,в 5) есть только один угол и одна сторона,а этого недостаточно для равенства,6) Второй признак равенства прямоугольных треугольников-по катету и остому углу, 12)по второму признаку равенства треугольников(по стороне и двум углам) или по второму признаку равенства прямоугольных треугольников (по катету и острому углу)