Рассмотрим треуг. АВО: АВ-наклонная, ВО - проекция, угол АОВ - 90 градусов, т.к. АО перпендикулярна плоскости альфа, значит она перпендикулярна любой прямой, лежащей в этой плоскости. => АО^2=АВ^2 -ВО^2; Рассмотрим треуг. АСО: АС-наклонная, ОС-проекция, угол АОС-90 градусов(правило точно такое же, как и в треуг. АОВ). => АО^2=АС^2 - ОС^2; Получается, АО - общая сторона в треугольниках АВО и АСО. Отсюда: АВ^2 -ВО^2= АС^2 - ОС^2 Получается, АВ=13см, а АС=15см. Найдем АО из треугольника АВО(можно и из треугольника АСО найти, это не принципиально): АО^2=169-25=144 АО=12.
Билет № 3 3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника. Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12 S=p*r=(a+b+c+d)*r/2=24*5/2=60
Билет № 4 3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника. Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4. В соответствии со свойством касательных, проведенных из одной точки к окружности AM=AK CK=CN BM=BN P=3+3+4+4+3+3=20
АВ-наклонная, ВО - проекция, угол АОВ - 90 градусов, т.к. АО перпендикулярна плоскости альфа, значит она перпендикулярна любой прямой, лежащей в этой плоскости. => АО^2=АВ^2 -ВО^2;
Рассмотрим треуг. АСО:
АС-наклонная, ОС-проекция, угол АОС-90 градусов(правило точно такое же, как и в треуг. АОВ). => АО^2=АС^2 - ОС^2;
Получается, АО - общая сторона в треугольниках АВО и АСО.
Отсюда: АВ^2 -ВО^2= АС^2 - ОС^2
Получается, АВ=13см, а АС=15см.
Найдем АО из треугольника АВО(можно и из треугольника АСО найти, это не принципиально):
АО^2=169-25=144
АО=12.
ответ: 12 см.