Две прямые дороги KM и PN, которые пересекаются где-то за лесом в недоступной точке С. Нужно найти расстояние от некоторого пункта А на дороге КМ к точке С пересечения дорог. Для этого обозначили на дороге PN пункт В так, чтобы можно было измерить расстояние АВ, и определили углы ВАМ и ABN. Объясните нахождения расстояния АС. Вычислите АС, если АВ = 800 м , ∠ВАМ = 85°, ∠АВN = 52° .
Объяснение: Таким , зная определенные теоремы геометрии, можно не ходить часами с линейкой по дороге измеряя длину АС, а ВЫЧИСЛИТЬ ее по теореме синусов .
Теорема синусов :" Стороны треугольника пропорциональны синусам противолежащих углов."
. Видимый и измеряемый отрезок пути АВ=800 м. Угол ∠С вычисляется по т. о сумме углов треугольника, т.к два доступных угла можно измерить на местности с простейшей астролябии ( можно изготовить в домашних условиях) : ∠С=180°-85°-52°=43°.
, АС=
≈
≈ 924 (м).
ответ:67.5 , 45
Объяснение:
нехай х коофіцієнт пропорційності, тоді 1 сторона=3 сторона=3х, друга стороно = 2х. Маємо рівняння:
2х+3х+3х=180
8х=180
х=180:8=22.5
1 сторона=3 сторона =3*22.5=67.5, друга сторона=2*22.5=45