Согласно теореме Пифагора, второй катет
AC = √ (AB² - BC²) = √ (25² - 15²) = √ 400 = 20 см.
Тогда площадь треугольника
S = AC * BC / 2 = 20 * 15 / 2 = 150 см².
Радиус вписанной окружности
r = 2 * S / (a + b + c) = 2 * 150 / (15 + 20 + 25) = 300 / 60 = 5 см.
Радиус окружности, описанной вокруг прямоугольного треугольника, равен половине гипотенузы, то есть в данном случае R = AB / 2 = 25 / 2 = 12,5 см.
Пусть точка Е - середина стороны АС. Тогда по теореме Пифагора
ВЕ = √ (ВС² + СЕ²) = √ (ВС² + (АС/2)²) = √ (15² + 10²) = √ 325 ≈ 18,03 см.
Радиус окружности описанной вокруг равностороннего треугольника находится по формуле:
R=√3/3 - где а-сторона треугольника
Высота в таком треугольнике можно найти по формуле:
h=√3/a*a - где а -сторона треугольника
По этой формуле найдём сторону равностороннего треугольника:
а=h : √3/2 или: а=3 : √3/2=3*2/√3=6/√3 (см)
Подставим найденное значение стороны треугольника в формулу для нахождения радиуса описанной окружности:
R=√3/3 *6/√3=√3*6/3*√3=6/3=2 (см)
ответ: Высота данного треугольника равна 2см