Решение: Пусть D– основа перпендикуляра, опущенного с точки А на прямую.
Тогда (1 случай) Точки М и С лежат в одной полуплоскости относительно прямой AD на прямой СМ.
АМ = 10 см, АС = 4√5 см, MD=6 см.
По теореме Пифагора AD=корень(AM^2-MD^2)= корень(10^2-6^2)=8 см.
По теореме Пифагора СD=корень(AС^2-АD^2)= корень((4*корень(5))^2-8^2)=4 см – длина проекции наклонной АС.
МС=MD-CD=6-4 =2 см
ответ: 4 см, 2 см.
Тогда (2 случай) Точки М и С лежат в разных полуплоскостях относительно прямой ADна прямой СМ.
АМ = 10 см, АС = 4√5 см, MD=6 см.
По теореме Пифагора AD=корень(AM^2-MD^2)= корень(10^2-6^2)=8 см.
По теореме Пифагора СD=корень(AС^2-АD^2)= корень((4*корень(5))^2-8^2)=4 см – длина проекции наклонной АС.
МС=MD+CD=6+4 =10 см
ответ: 4 см, 10 см.
треугольнике ABC со сторонами AB=2 см, BC=3 см и AC=3 см проведена биссектриса BM. Найдите длины отрезков AM и MC.
№2 В треугольнике MNKизвестны длины сторон MN=4 см,NK=5 см, NP — биссектриса, а разность длин отрезковMP и PKравна 0,5 см. Найдите MPи PK.
№3 треугольнике DEP проведена биссектрисаEK. Найдите стороныDE и EP,если DK=3 см, KP=4 см, а периметр треугольника DEP равен 21 см.
№4 В треугольнике ABC: BC-AB=3 см, биссектриса BD делит сторону AC на отрезки AD=2 см и DC=3 см. Найдите длины сторон AB и BC
№6 Периметр треугольника CDE равен 55 см. В этот треугольник вписан ромб DMFN так, что вершиныM,F и N лежат соответственно на сторонах CD,CE и DE. Найдите стороны CB и DE, если CF=8 см;EF=12 см. В прямоугольном треугольнике проведена биссектриса острого угла. Известно что эта биссектриса делит противолежащий катет на отрезки 4 см и 5 см. Найдите площадь прямоугольного треугольника.
Точка O на гипотенузе равноудалена от двух катетов прямоугольного треугольника и делит