Пусть трапеция АВСD, СН перпендикулярно AD.
Обозначим AD = a, ВС = b; CD = c; CH = h, HD = x.
Задано b/a =3/4;
Боковая сторона равна средней линии трапеции. Это - потому, что описанный четырехугольник, суммы противоположных сторон равны. c = (a + b)/2;
Легко видеть, что x = (a - b)/2; (кто не видит - проведите высоту из В)
Еще легче увидеть, что h^2 = a*b (ну, из теоремы Пифагора)
НЕ - высота в прямоугольном треугольнике СHD, поэтому она делит треугольник на два, ему же подобных.
Если обозначить y = ED и z = CE, то
у/x = x/c; y = x^2/c;
z/h = h/c; z = h^2/c;
y/z = x^2/h^2 = (a - b)^2/(4*a*b) = (1 - b/a)^2/(4*b/a) = (1/4)^2/3 = 1/48
Мда, чего то мало получилось
А если так - пусть а = 8; b = 6; x = 1; c = 7; h = корень(48); ну, вобщем, не удивительно, действительно 1/48.
S(ABCD) --?
∠DAC =∠ACB ( как накрест лежащие углы ) ⇒∠BAС=∠ACB .те. треугольник
ABС равнобедренный (AB=BС =15 см ) . По известным сторонам можно определить площадь трапеции .
Проведем BE ⊥ AD . AE = (AD - BC)/2 =( 33 -15)/2 =9 (см ) .
Из прямоугольного ΔABE получаем BE =16 см * * * (3*3 ; 3*4 ;3*5 * * *
S(ABCD) = ((AD+BC)/2)*BE =((33+15)/2) *16 =384 (см² ).
* * * * * * * второй
Можно проведем BE || CD ;E ∈ [AD] .Треугольник ABE известен по трем сторонам: BE =CD ;CD; ED=AD - BC. S(ABCD)/S(ABE) =(AD+BC)/(AD-BC).
S(ABCD)S(ABE) = S(ABE) *(AD+BC)/(AD-BC) .
.