Высота, опущенная из вершины прямого угла на гипотенузу, делит прямоугольный треугольник на подобные треугольники.
Гипотенуза прямоугольного треугольника равна длине двух его медиан.
Пусть коэффициент данного по условию отношения высоты и медианы будет 1.
Тогда высота равна 40, медиана 41, гипотенуза 2*41=82
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
Примем отрезок АН гипотенузы за х, НВ тогда 82-х
Квадрат высоты равен произведению отрезков АН и НВ
СН²=АН*НВ
1600=х(82-х)
х²-82х+1600=0
Решив квадратное уравнение, найдем два значения х=50 и х=32.
АН, как более короткий отрезок, равен 32,
НВ=50
Треугольники АНС, СНВ и АВС подобны .
И отношение их катетов одинаково.
Найдем отношение известных катетов в треугольниках АНС и СНВ. АН:СН=СН:НВ=4:5
АС:СВ=4/5
Но всегда простое решение - лучше сложного.
Вариант решения:
Основа решения:
Гипотенуза прямоугольного треугольника равна длине двух его медиан.
Между медианой и высотой образовался прямоугольный треугольник с гипотенузой СМ=41 и катетом СН=40.
По т.Пифагора отрезок гипотенузы НМ=9.
И тогда катет АН треугольника АНС относится к соответственному катету СН подобного ему треугольника СНВ как АН:НС=32:40=4/5
И вариант третий - если знать, что в треугольнике с гипотенузой 41, и катетом 40 второй катет равен 9 ( одна из троек Пифагора)- позволяет обойтись самым минимумом вычислений.
Проведем LЕ||ВСAL=ВL=СЕ=ЕDСL=DL как диагонали равных прямоугольников. ∠СLЕ=∠DLЕ∠ВСL=∠СLE=∠DLЕ ВМ=СМ, АВ=СD Прямоугольные треугольнике АВМ и СDМ равны ∠ВМА=∠СМD Угол СМК=∠МКL как накрестлежащие при параллельных прямых ВС и LЕ и секущей МК Из равенства ∠ВМА=∠СМD следует ∠МКL=∠ВМР ∠ВМР - внешний угол при вершине М треугольника РМС и равен сумме углов ∆ МРС, не смежных с ним. ∠МКL - внешний угол при вершине К треугольника LКD и равен сумме углов ∆ КDL, не смежных с ним. Т.к. углы МСР и КLD этих треугольников равны, то ∠ КDL=∠ СРМ=30º Угол МDL- это угол КDL, угол МDL=30º --------- Вариант решения. Проведем АЕ || LС СЕ=АL=ЕD АЕ=LD Угол МАЕ=МРС как соответственные при параллельных прямых и секущей. Проведем прямую из М через к середине АD. АК=КD как половины равных АЕ и LD В треугольниках АМК и МDК по 3 равных стороны: АК=КD, АМ=DМ, МК - общая, следовательно, они равны третьему признаку равенства треугольников. Угол МАК=углу МDК. Но МАК=углу МРС, следовательно, угол МDК=30º, и МDL=30º
Ткс...) Решение: тебе дан ромб ,диагонали которого равны 16 и 30, если нарисовать его и подписать числа, то можно увидеть ,что диагонали пересекаются в точке О, которая в следствии делит их пополам. Итак, 16:2=8; 30:2=15 и получаем катеты 15 и 8, а найти нужно гипотенузу любимая теорема Пифагора(знаешь ведь?) она гласит: квадрат гипотенузы треугольника равен сумме квадратов катетов, С(сторона х= √ под корнем: 15 в квадрате + 8 в квадрате и это равно 225+64=289, а 289 это квадрат числа 17 ответ : сторона ромба равна 17) Удачи:)
Высота, опущенная из вершины прямого угла на гипотенузу, делит прямоугольный треугольник на подобные треугольники.
Гипотенуза прямоугольного треугольника равна длине двух его медиан.
Пусть коэффициент данного по условию отношения высоты и медианы будет 1.
Тогда высота равна 40, медиана 41, гипотенуза 2*41=82
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
Примем отрезок АН гипотенузы за х, НВ тогда 82-х
Квадрат высоты равен произведению отрезков АН и НВ
СН²=АН*НВ
1600=х(82-х)
х²-82х+1600=0
Решив квадратное уравнение, найдем два значения х=50 и х=32.
АН, как более короткий отрезок, равен 32,
НВ=50
Треугольники АНС, СНВ и АВС подобны .
И отношение их катетов одинаково.
Найдем отношение известных катетов в треугольниках АНС и СНВ. АН:СН=СН:НВ=4:5
АС:СВ=4/5
Но всегда простое решение - лучше сложного.
Вариант решения:
Основа решения:
Гипотенуза прямоугольного треугольника равна длине двух его медиан.
Между медианой и высотой образовался прямоугольный треугольник с гипотенузой СМ=41 и катетом СН=40.
По т.Пифагора отрезок гипотенузы НМ=9.
И тогда катет АН треугольника АНС относится к соответственному катету СН подобного ему треугольника СНВ как АН:НС=32:40=4/5
И вариант третий - если знать, что в треугольнике с гипотенузой 41, и катетом 40 второй катет равен 9 ( одна из троек Пифагора)- позволяет обойтись самым минимумом вычислений.