Объяснение:
Разделим тождество на две части и решим каждого:
1+ tg×(180°- a)×sin×(90°-a)×sin a = cos²×(180°- a)
1) 1+ tg×(180°- a)×sin×(90°-a)×sin a
Сначало по формулам приведения переведем тригоном. функции:
1-tg a × cos a × sin a
Дальше,раскрываем тангенс по формуле: tg a =sin a/cos a :
1-sin a/cos a × cos a × sin a
Сокращаем cos a и получаем:
1-sin² a=> по осн. тригоном. тожд. => cos² a
2)cos²×(180°- a)
Воспользуемся формулой приведения:
cos²×(180°- a)= - cos²a
По основ. тригоном.тождеству sin²a+cos²a=1 =>cos²a=1-sin²a :
- cos²a = -(1-sin²a) = -1+sin²a=sin²a-1=cos²a
В первой части тождества получили: cos² a
И во второй части получили: cos² a
Поэтому:
cos² a=cos² a
Ч.т.д
ответ: cos B - 12/13
sin B-5/13
tg B-5/12
ctg B-12/5
Объяснение:
Синус острого угла в прямоугольном треугольнике – это отношение противолежащего катета к гипотенузе.
Косинус острого угла в прямоугольном треугольнике – это отношение прилежащего катета к гипотенузе.
Тангенс острого угла в прямоугольном треугольнике – это отношение противолежащего катета к прилежащему.
Котангенс острого угла в прямоугольном треугольнике – это отношение прилежащего катета к противолежащему.
P.s
Постараюсь русским языком объяснить. BA- гипотенуза, она равна 13 см. ВС- это катет прилегающий катет, равен 12 см. СА это противолежащий катет,равен 5 см. И теперь по выписанным значениям делаем.
А если у нас угол А был бы,то CA был прилегающим катетом. А ВС противолежащим катетом.
Надеюсь понятно объяснил.
1. Представим треугольник АВС со сторонами а=13, b=11, с =6 и соответствующими углами α, β, γ. Во-первых, ΔАВС - разносторонний по условию.
Теорема косинусов:
с^2= a^2 + b^2 - 2abcosγ
Следствия из теоремы косинусов:
а) если с^2 < a^2 + b^2, => γ<90° (острый угол)
b) c^2= a^2 + b^2, => γ=90° (прямой)
c) c^2 > a^2 + b^2, => γ>90° (тупой)
Проверим стороны:
1) 13^2 ... 11^2 + 6^2; 169 > 121 + 36: 169 > 157; => α > 90°
Получили, что угол альфа - тупой. Из этого следует, что ΔАВС - тупоугольный, углы бета и гамма - острые.
Итак, АВС - разносторонний тупоугольный треугольник.
2. ΔАВС: АС=28см, ∠АВС=60°, АВ/ВС=8/5
Пусть АВ=8х, а ВС=5х, тогда по теореме косинусов:
28^2 = (8x)^2 + (5x)^2 - 2*8x*5x*cos(∠ABC)
784 = 64x^2 + 25x^2 - 40x^2; 49x^2 = 784; x^2=16; x=4см - 1 часть
АВ=8х= 8 частей= 32см, ВС=5х= 5 частей= 20см
3. НОГА - параллелограмм: НО ║ ГА, НА ║ ОГ; НО=ГА=1, НА=ОГ=√3; = √7 - диагональ;
По теореме косинусов найдём угол ∠НОГ:
7 = 1 + 3 - 2√3соs(∠НОГ)
соs(∠НОГ)=3/-2√3=-√3/2, значит по формуле привидения:
cos(∠НОГ)= -(cos30°) = cos(180°-30°) = cos150°, НОГ=150°
Следовательно, ∠НАГ=150°, ∠ОНГ=∠ОГА=30° (свойства параллелограмма)
Найдём вторую диагональ по свойству параллелограмма:
d₁²+d₂²=2(a²+b²), где d - диагонали
7 + d₂²=2(1+3)
d₂²= 1; d₂= 1