На стороне АС отметим точку К симметричную точке С относительно Высоты ВД Тогда по условию АК = АД - ДС = ВС Отрезок ВК = ВС так как К симметрично С Рассмотрим треугольник АКВ. Он равнобедренный так как АК = КВ Тогда угол КАВ = углу КВА Угол ВКД внешний угол треугольника АКВ Тогда угол ВКД = угол КАВ + угол КВА = 2* угол КАВ (так как углы при основании равнобедренного треугольника равны) Угол ВКД = угол ВСД как углы при основании равнобедренного треугольника. Тогда угол ВСД = 2* угол КАВ угол ВСД + угол КАВ = 90 тогда 2* угол КАВ + угол КАВ = 90 тогда 3* угол КАВ = 90 тогда угол КАВ = 30 а угол ВСД = 60 ответ 30 и 60
1/ AB параллельна m, площадь АВС=1/2АВ*СН, СН-высота на АВ, так как две прямые параллельны, то перпендикуляр к одной из них будет перпендикулярен и другой, СН перпендикулярна m - СН величина поястоянная между двумя параллельными прямыми, а основание одно, какие бы точки не брались на m , площадь треугольника всегда будет=1/2АВ*СН 2. треугольник АВС, ВМ медиана на АС, АМ=МС=1/2АС, проводим высоту ВН на АС, площадь АВМ=1/2АМ*ВН=1/2*1/2АС*ВН=1/4*АС*ВН, площадь МВС=1/2МС*ВН=1/2*1/2АС*ВН=1/4*АС*ВН, площади треугольников равны, медиана делит треугольник на 2 равновеликих треугольника
отет в
Объяснение: