ответ: 4) 288.
Решение.
Пусть ABC - треугольник, и угол B - ппрямой.
Пусть BК - высота, проведенная из вершины прямого угла B,
BМ - бисектриса, проведенная из угла B, при этом на стороне АС.
BК = 6, ВМ = 8.
точки находятся в таком порядке: A, К, М, C.
Начертите такой треугольник, чтобы было понятнее.
Угол АВМ = угол МВС = 45 гр = pi/4.
Обозначим угол КВМ = alfa.
cos(alfa) = ВК/ВМ = 6/8 = 3/4.
sin(alfa) = V(1 - 9/16) = V((16 - 9)/16) = V(7)/4 (V - корень квдратный) .
В треугольнике АВК угол АВК = угол АВМ - alfa = pi/4 - alfa.
АВ = ВК/cos(pi/4 - alfa) = 6/cos(pi/4 - alfa).
В треугольнике КВС угол КВС = угол МВС + alfa = pi/4 + alfa.
ВС = ВК/cos(pi/4 + alfa) = 6/cos(pi/4 + alfa).
Площадь треугольника АВС:
S = (1/2)*АВ*ВС = (1/2)*6*6/( cos(pi/4 - alfa)*cos(pi/4 + alfa) ) = 18/( cos(pi/4 - alfa)*cos(pi/4 + alfa) ).
cos(pi/4 - alfa) = cos(pi/4)*cos(alfa) + sin(pi/4)*sin(alfa) = (V(2)/2)*(3/4) + (V(2)/2)*(V(7)/4) = (V(2)/2)*(3 + V(7)/4
cos(pi/4 + alfa) = cos(pi/4)*cos(alfa) - sin(pi/4)*sin(alfa) = (V(2)/2)*(3/4) - (V(2)/2)*(V(7)/4) = (V(2)/2)*(3 - V(7)/4
Поэтоиу
S = 18*4*4/( (V(2)/2)*(3 + V(7)* (V(2)/2)*(3 - V(7) ) = 18*16*2/(3^2 - V(7)^2) = 18*16*2/(9 - 7) = 18*16 = 288.
Объяснение:
Отрезки МК и NP параллельны соседним сторонам прямоугольника, => соответственно равны им, пересекаются под прямым углом и делят АВСD на 4 прямоугольника, (неважно, равной или разной площади). Обозначим точку пересечения МК и NP буквой О.
а)
Стороны четырехугольника МNKP являются диагоналями получившихся прямоугольников и делят каждый из них пополам (свойство). Поэтому площадь MNKP равна сумме площадей этих половин, т.е. равна половине площади ABCD.
б)
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
Так как S(ABCD)=AB•CD, МК=АD и NP=AB, а sin90°=1, то S(MNKP)=MK•NP•sin90°=0,5•S(ABCD).
в)
S(MNKP)=S∆MNP+S∆NKP=0.5•MO•NP+0.5•KO•NP=0,5•NP•(MO+OK) => S(MNKP)=0,5•NP•MK =>
S(MNKP) =0,5•S(ABCD), т.к. NP=AB и МК=АD