Судя по рисунку КС=КВ значит треугольник СКВ - равнобедренный, а у равнобедренных треугольников углы при основании равны ∠КСВ=∠КВС=76°. Далее рассмотрим треугольник КВА. У него КВ=ВА (значит он равнобедренный) и КD=DA значит BD является медианой, а так как треугольник равнобедренный, то и бессектрисой и высотой. Следовательно углы КВD и DBA равны и вместе с углом КВС составляют развёрнутый угол СВА. Как известно развёрнутый угол рвен 180°. Можно записать: ∠СВА=∠КВС+∠KBD+∠DBA, а так как углы KBD и DBA равны, то ∠СВА=∠КВС+2∠DBA. Отсюда ∠DBA=(∠СВА-∠КВС)/2=(180°-76°)/2=52°. ответ:∠DBA=52°.
Т.к. треугольник ABC равносторонний, то все его углы равны по 60 градусов. Рассмотрим прямоугольный треугольник ADM: угол А=60 град. (тк ABC равносторонний), угол DMA=90 град (тк DM перпендикуляр), следовательно угол D=180-(60+90)=30 град (сумма углов в тр-ке равна 180 град). Т.к. в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы, то значит катет AD будет равен 14 см. Если D cередина стороны АВ, то АВ=14*2=28 см. В равностороннем тр-ке все стороны равны, следовательно АВ=АС=ВС=28 см. Периметр треугольника АВС=28+28+28=28*3=84 см.