5
Объяснение:
Гипотенуза . Радиус вписанной в прямоугольный треугольник окружности
. Площадь
.
Рассмотрим четырёхугольник OA₁CB₁: ∠С = 90° по условию, ∠A₁ = ∠B₁ = 90° как углы между радиусом и касательной, тогда ∠O = 360° - ∠C - ∠A₁ - ∠B₁ = 360° - 3·90° = 90°. Значит, OA₁CB₁ — прямоугольник, но поскольку OA₁ = OB₁ = r, это квадрат. Тогда OA₁ = OB₁ = B₁C = A₁C = 1.
AC₁ = AB₁ как отрезки касательных, проведённых из одной точки. При этом AB₁ = AC - B₁C = 4 - 1 = 3, т. е. AC₁ = AB₁ = 3. Аналогично BC₁ = A₁B = BC - A₁C = 3 - 1 = 2.
Найдём площадь путём вычитания площадей
из площади
: