Проведем радиусы от центра окружности О до точек касания В и С. И соедини центр окружности с точкой А. рассмотрим получившиеся треугольники АВО и АСО, в них: угол АВО = угол АСО = 90 гр. (св-во касательных) , следовательно, треугольники АВО и АСО прямоугольные. А чтобы доказать равенство двух прямоуг. треуг-ов достаточно найти 2 равных элемента: - катет ОВ = катет ОС (радиусы окружности) - ОА - общ. гипотенуза из этого следует, что треугольники равны, следовательно все элементы этих треуг-ов равны. а следовательно равны и катеты АС и АВ ч. т. д.
Действительно: CB₁/AB₁=BC/BA =14/15 (свойство биссектрисы BB₁ в ΔABC) ⇒ CB₁=14k ,AB₁ =15k ,CA=CB₁+AB₁ =29k ⇒ CB₁/CA =14/29. --- аналогично : A₁P/PA=BA₁/BA =7/15 (свойство биссектрисы BP в ΔABA₁) ⇒A₁P=7m, PA =15m , A₁A=A₁P+PA) =22m ⇒ A₁P/A₁A =7/22.
Таким образом получили: S(A₁PB₁C) =S*14/29 -(S/2)*(7/22). Площадь треугольника вычисляем по формуле Герона : S =√p(p-a)(p-b)(p-c) =√21(21-14)(21-15)(21-13) =√21*7*6*8 = √(7*7*3*3*2*2*4) =7*3*4 =84.
1. <BAC = 180°-<BAN = 180°-150°=30° (т.к. сумма смежных углов равна 180°)
<CBA=180°-(<BAC+<BCA) = 180°- (30°+70°)=80° (т.к. сумма углов в треугольнике равна 180°)
<N=180°, т.к. это развёрнутый угол
2. <EDC=180°-70°=110° (т.к. сумма смежных углов 180°)
️ EDC - равнобедренный => углы при основании равны (<DEC = <ECD)
110 + 2х = 180
2х = 180 - 110
2х = 70
х = 70:2
х = 35 - <DEC, <ECD
ну и <А тоже =180°