Высота проведена к большему основанию. У нас получился прямоугольный треугольник, две стороны нам известны, находим третью по теореме Пифагора: 5²-4²=х² х²=25-16=9 х=3 Проводим высоту из второй вершины к этому же основанию.У нас получается два прямоугольных треугольника. Так трапеция равнобедренная, то гипотенузы равны Высоты одной трапеции равны, следовательно, у нас есть равные катеты Треугольники равны по гипотенузе и катету, значит, неизвестная сторона второго треугольника тоже равна 3 После проведения двух высот у нас получился квадрат, сторона которого равна меньшему основанию.Находим её: 10-3-3=4 Средняя линия равна полусумме оснований: (10+4)/2=7 Площадь трапеции равна полусумме оснований на высоту (10+4)/2 х4=28
вектор ас имеет проекции
ас х = (4 - 0) = 4; ас у = (3 - 3) = 0
ас (4; 0)
вектор bс имеет проекции
bс х = (4 - 4) = 0; bс у = (3 - 0) = 3
bс (0; 3)
найдём скалярное произведение векторов ас и bс
ас · bс = (4 · 0 + 0 · 3) = 0
следовательно векторы ас и вс перпендикулярны.
угол асв - прямой и опирается на диаметр аb
Найдём диаметр ав
IabI = √(0 + 4)² + (3 + 0)² = 5
Радиус окружности равен половине диаметра R = 2,5.
Центр окружности O расположен посредине между точками а и b
Найдём координаты точки О
xО = (0 + 4)/2 = 2; уО = (3 + 0)/2 = 1,5
Запишем уравнение окружности (х - хО)² + (у - уО)² =R²
(х - 2)² + (у - 1,5)² = 2,5²