Т к у ромба все стороны раны, и известен периметр, найдем длины сторон: АВ=ВС=СК=АК=16/4=4см. Рассмотри один из прямоугольных треугольников, образовавшихся при пересечении диагоналей ромба: треугольник АОВ: против угла в 30 градусов (АВО) лежит катет, равный половине гипотенузы, т е АО=4/2=2см. АО=ОС=2см, а ВО=ОК т к диагонали ромба точкой пересечения делятся пополам.Найдем длину ВО по теореме Пифагора, из треугольника АВО: ВО=ОК=корень из АВ^2-AO^2=корень из 16-4=2корня из 3(см).Тогда ВК=ВО+ОК=2корня из 3+2корня из 3=4корня из 3(см). АС=АО+ОС=2+2=4см.Площадь ромба равна половине произведения длин его диагоналей:S=1/2*АС*ВК=1/2*4*4корня из 3=8корней из3(см^2).ОТВЕТ: 8корней из3(см^2)
Т к у ромба все стороны раны, и известен периметр, найдем длины сторон: АВ=ВС=СК=АК=16/4=4см. Рассмотри один из прямоугольных треугольников, образовавшихся при пересечении диагоналей ромба: треугольник АОВ: против угла в 30 градусов (АВО) лежит катет, равный половине гипотенузы, т е АО=4/2=2см. АО=ОС=2см, а ВО=ОК т к диагонали ромба точкой пересечения делятся пополам.Найдем длину ВО по теореме Пифагора, из треугольника АВО: ВО=ОК=корень из АВ^2-AO^2=корень из 16-4=2корня из 3(см).Тогда ВК=ВО+ОК=2корня из 3+2корня из 3=4корня из 3(см). АС=АО+ОС=2+2=4см.Площадь ромба равна половине произведения длин его диагоналей:S=1/2*АС*ВК=1/2*4*4корня из 3=8корней из3(см^2).ОТВЕТ: 8корней из3(см^2)
центр диагонали АС
О = 1/2(А + С) = 1/2((1;2) + (5;5)) = 1/2(6;7) = (3; 7/2)
диаметр
d = AC = √((5-1)² + (5-2)²) = √(16 + 9) = √25 = 5
Радиус
r = d/2 = 5/2
Уравнение окружности
(x-3)² + (y-7/2)² = (5/2)²
(x-3)² + (y-7/2)² = 25/4