Объяснение:
ответ
4,9/5
15
liftec74
ученый
249 ответов
60.5 тыс. пользователей, получивших
ответ: 1) Рabcd=22 см 2) Pabcd=32 см
Объяснение:
Дан параллелограмм ABCD. Угла А и С острые. В и D тупые. Тогда:
1) ВК - биссектриса угла В. АК=4 см и КD= см =>AD=BC=4+3=7 см
Так как ВК-биссектриса, то угол АВК=углу СВК.
Угол СВК=АКВ , так как углы СВК и АКВ накрест лежащие и AD II BC
Тогда угол АКВ=АВК => треугольник АВК равнобедренный=> АВ=АК=4 см
АВ=CD=4 cm
=> Pabcd=AB*2+AD*2=4*2+7*2=8+14=22 см
2) АМ - биссектриса угла А ВМ=5 см МС=6 см => BC=AD=5+6=11 см
Далее все аналогично пункта 1.
MAD=BAM, так MAD ы BAM накрест лежащие и BC II AD
=> BAM=BMA
=> АВС - равнобедренный треугольник => AB=BM=5 cm
=>P abcd= 5*2+ 11*2=10+22=32 см
Дан параллельный вектор e¯¯¯={1,−6,−4}.
Для уравнения плоскости нужен нормальный (то есть перпендикулярный) вектор.
Их произведение (скалярное) равно нулю.
Примем одну координату за 0 - по оси Oz.
Получим нормальный вектор (6; 1; 0)
В уравнение плоскости подставим координаты точки М0:
6*(x - 7) + 1*(y - 2) + 0*(z - 9) = 0.
6x - 42 + y - 2 = 0, получаем уравнение:
6x + y - 42 = 0.
Делаем проверку - подставляем координаты точки M1(7,3,10).
6*7 + 3 - 42 = 3. Не проходит плоскость через эту точку.
Тогда нормальный вектор находим как векторное произведение векторов М0М1 и e¯¯¯={1,−6,−4}.
Вектор М0М1 = M1(7,3,10) - M0(7,2,9) = (0; 1; 1)
i j k| i j
0 1 1| 0 1
1 -6 -4| 1 -6 = -4i + 1j + 0k -0j + 6i - 1k = 2i + 1j - 1k.
Получаем координаты нормального вектора (2; 1; -1) и точку M0(7,2,9).
Уравнение плоскости: 2(x - 7) + 1(y - 2) - 1(z - 9) = 0.
2x - 14 + y - 2 - z + 9 = 0.
2x + y - z - 7 = 0.
Проверяем М0: 2*7 + 1*2 - 1*9 - 7 = 14 + 2 - 9 - 7 = 0,
M1(7,3,10): 2*7 + 1*3 -1*10 - 7 = 14 + 3 - 10 - 7 = 0.
Верно.
ответ: уравнение плоскости 2x + y - z - 7 = 0.