а) У ромба все стороны равны из этого следует что P=a*4; 32см :4=8см
ответ: стороны ромба 8см
б) 2( x + 2x) = 24 ; 6x = 24 ; x = 4 ; a = 4одна сторона; b = 8 другая сторона.
в) Средняя линия треугольника равна половине соответствующей стороны, значит сторона равна 14см.
г) Пусть одна сторона будет х, а другая х+5, тогда: 2·(х+х+5)=50
2·(2х+5)=50 ; 4х+10=50 ; 4х=50-10 ; 4х=40 ; х=40:4 ; х=10
Значит одна сторона х=10 см, а другая х+5=10+5=15 см.
д) Делим ромб диагоналями на 4 равных прямоугольных треугольника.Т.к диагонали делят углы ромба пополам то в этих треугольничках один из углов 60:2=30*.Катет лежащий против угла в 30 градусов равен половине гепотенузы (16:4=4) => половина меньшей диагонали 4:2=2 => вся меньшая диагональ 2*2=4 см.
e) Средняя линии трапеции равна сумме длин двух оснований=> 10+22/2=32/2=16 см
ж) В прямоугольнике диагонали равны 18:2=9. ответ: Диагонали по 9 см.
и) Периметр 1*4=4 см; Площадь 1*1=1 см2
к) У квадрата 4 стороны. По свойству квадрата они равны между собой, поэтому: 64/4= 16 см - каждая сторона площадь квадрата равна произведению двух его сторон, поэтому площадь квадрата = 16*16=256 см2
П`ятикутник - це багатокутник, у якого п`ять кутів. П`ятикутники бувають правильними, неправильними, опуклими, увігнутими, зірчастими. Не існу диного обчислення площі п`ятикутників, але легко знайти площу правильного п`ятикутника. Ця стаття описує два основних обчислення площі правильного п`ятикутника.
Кроки
Частина 1 з 3: Основи
1
Правильні і неправильні п`ятикутники. Правильний п`ятикутник - це п`ятикутник, у якого всі сторони рівними в іншому випадку п`ятикутник називається неправильним.
Правильний п`ятикутник завжди буде опуклим (див. Нижче). Неправильний п`ятикутник може бути і опуклим, і увігнутим.
2
Опуклі і увігнуті п`ятикутники. Опуклий п`ятикутник не має вершин, спрямованих всередину фігури (іншими словами, не має внутрішніх кутів більше 180 градусів). Увігнутий п`ятикутник має вершину, спрямовану всередину фігури (іншими словами, має внутрішній кут більше 180 градусів).
3
Периметр п`ятикутника. Як і у випадку інших геометричних фігур, знайти периметр п`ятикутника легко складіть довжини всіх п`яти сторін.
4
Апофема правильного п`ятикутника. Апофема - відрізок, що з`єднує центр п`ятикутника і середину будь-який з його сторін.
5
Основні тригонометричні функції. Їх треба знати, оскільки площа п`ятикутника можна знайти за до його розбиття на прямокутні трикутники. Існують три основні тригонометричних функції: sin кута = протилежний катет / гіпотенуза- cos кута = прилежащий катет / гіпотенуза- tg кута = протилежний катет / прилежащий катет.
Частина 2 з 3: Обчислення площі п`ятикутника: геометрія
1
Розбийте п`ятикутник на п`ять рівнобедрених трикутників. Потім у кожному трикутнику опустіть висоту (з центру п`ятикутника). Ви отримаєте десять прямокутних трикутників. Запам`ятайте: кожен кут п`ятикутника дорівнює 108 градусам.
Наприклад, знайдіть площа правильного п`ятикутника зі стороною 6 см. Для початку розбийте його так, як показано на малюнку.
2
Знайдіть сторони рівнобедреного трикутника. Для цього розгляньте один з прямокутних трикутників.
У наведеному прикладі сторона п`ятикутника дорівнює 6 см. Отже, один катет прямокутного трикутника дорівнює 3 см (оскільки висота ділить сторону п`ятикутника навпіл). За до тригонометричних функцій можна обчислити інші сторони. Обчислення показані на малюнку.
3
Обчисліть площу прямокутного трикутника. Площа прямокутного трикутника обчислюється за формулою: А1 = ab / 2.
У наведеному вище прикладі підставте знайдені значення в цю формулу. Обчислення показані на малюнку.
4
Знайдіть площу п`ятикутника. Нагадаємо, що ви розбили п`ятикутник на десять прямокутних трикутників. Таким чином, загальна площа п`ятикутника в десять разів більше площі одного прямокутного трикутника: А = 10 * А1.
У наведеному вище прикладі площа п`ятикутника обчислюється таким чином: А = 10 * А1 = 10 * 3,0321 = 30,3210.
Частина 3 з 3: Обчислення площі п`ятикутника: формула
1
Формула для обчислення площі будь-якого правильного багатокутника: A = Pa / 2, де Р - периметр багатокутника, а - апофема багатокутника.
Наприклад, дано правильний п`ятикутник зі стороною 6 см. Знайдіть його площу.
2
Знайдіть периметр п`ятикутника. Для цього складіть довжини всіх його сторін.
У наведеному вище прикладі: Р = 6 + 6 + 6 + 6 + 6 = 30.
3
Знайдіть апофему п`ятикутника. Якщо ви знаєте сторону багатокутника, то його апофема обчислюється за формулою: а = s / 2tan (180 / n), де s - сторона багатокутника, n - кількість сторін багатокутника.
У наведеному вище прикладі обчислення апофеми показано на малюнку.
4
Обчисліть площу п`ятикутника. Для цього використовуйте основну формулу для обчислення площі п`ятикутника.
У наведеному вище прикладі: А = (30 * 2,0214) / 2 = 30,3210.
Поради
Якщо можливо, обчисліть площа п`ятикутника, використовуючи обидва описаних методу. Потім порівняйте результати, щоб підтвердити правильність відповіді.