В двух конусах равные высоты, а радиус основания первого конуса в 6 раз меньше радиуса основания второго конуса. Во сколько раз объем первого конуса меньше объёма второго? с объяснением и решением!
сфера w проходит через вершины квадрата ABCD сторона которого равна 12 см. Найдите расстояние от центра сферы - точки o до плоскости квадрата если радиус OD образует с плоскостью квадрата угол, равный 60
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок - бесплатно!
Так как все точки квадрата лежат на сфере, то они равноудалены от точки О. Значит пирамида ОABCD - правильная, О - ее вершина. Тогда проекция О на плоскость ABCD - точка пересечения диагоналей (обозначим ее точкой Н).
ОН - искомое расстояние. Проекция OD на плоскость квадрата - отрезок DH, значит угол ODH = 60 градусов. DH - половина диагонали квадрата (вся диагональ равна 12 корней из 2), то есть DH = 6 корней из 2.
tg(ODH) = OH/DH, OH = DH*tg(OGH) = (6 корней из 2)*(тангенс 60 градусов) = (6 корней из 2)*(корень из 3) = 6 корней из 6.
Из нового синтетического материала изготовили брусок в форме прямоугольного параллелепипеда, полная поверхность которого равна 192 см2.
Брусок был подвергнут давлению по всем граням таким образом, что форма прямоугольного параллелепипеда сохранилась, но каждое ребро уменьшилось на 1 см.
Сравнивая два бруска, имеющих форму прямоугольного параллелепипеда, установили, что длина, ширина и высота второго бруска соответственно на 1 см больше, чем у первого бруска, а объем и полная поверхность второго бруска соответственно на 18 см3 и 30 см2 больше, чем у первого.
Одно из боковых ребер наклонного параллелепипеда составляет равные острые углы с прилежащими к нему сторонами нижнего основания.
Через диагональ нижнего основания произвольного параллелепипеда и середину не пересекающего ее бокового ребра проведена плоскость.
Как относятся объемы образовавшихся при этом частей параллелепипеда?
Дан параллелепипед ^SCDA^jCjDj.
Доказать, что в прямоугольном параллелепипеде ABCDA1B1C1D1 сумма.
1) Пусть Xf, хг и х3 — длины ребер, выходящих из одной вершины некоторого прямоугольного параллелепипеда.
2) Найти длины ребер такого прямоугольного параллелепипеда, у которого сумма всех ребер, полная поверхность и объем соответственно равны 48 см, 88 см2 и 48 см9.
Длины ребер, исходящих из общей вершины некоторого прямоугольного параллелепипеда, являются корнями уравнения а*3+ ~\-bx*-\-cx-}-d=Q.
Определить длину диагонали этого параллелепипеда.
Найти площадь поверхности сферы, описанной около прямоугольного параллелепипеда, три измерения которого являются корнями уравнения Х3+шг2+йлг+с=0.
] Доказать, что сумма квадратов длин всех ребер параллелепипеда равна сумме квадратов длин всех его четырех диагоналей.
Доказать, что из всех прямоугольных параллелепипедов С данной суммой всех ребер наибольший объем имеет куб.
Диагональ прямоугольного параллелепипеда рагаа 13 см, _а диагонали его боковых граней равны 4У10 см и 3]/17 см.
В прямом параллелепипеде стороны основания равны а и Ь, острый угол между ними содержит 60°.
Большая диагональ основания конгруэнтна меньшей диагонали параллелепипеда.
Основанием прямого параллелепипеда служит ромб.
В основании прямого параллелепипеда лежит параллелограмм со сторонами 1 см и 4 см и острым углом 60°.
Основанием параллелепипеда служит квадрат.
Определить полную поверхность этого параллелепипеда.
Определить объем прямоугольного параллелепипеда, диагональ которого равна / и составляет о одной гранью угол 30°, а с другой 45°.
Основанием прямого параллелепипеда служит ромб, площадь которого равна Q.
Стороны основания прямоугольного параллелепипеда равны а и Ь.
Стороны основания прямоугольного параллелепипеда равны а и Ь.
Определить объем прямоугольного параллелепипеда, если его диагональ равна d, а длины ребер относятся, как т: п: р.
В прямом параллелепипеде стороны основания равны а и Ь и образуют угол 30°.
Стороны основания прямоугольного параллелепипеда относятся, как т: п, а диагональное сечение представляет собой квадрат с площадью, равной Q.
Измерения прямоугольного параллелепипеда равны 2 см, 3 см и 6 см.
Из медной болванки, имеющей форму пря--моугольного параллелепипеда размером 80 смХ20 смХ Х5 см, прокатывается лист толщиной 1 мм.
В наклонном параллелепипеде проекция бокового ребра на плоскость основания равна 5 дм, а высота равна 12 дм.
Основанием параллелепипеда служит ромб со стороной а и острым углом 30
Задать вопрос Регистрация Вход
menu
Online-Otvet.ru
Поиск по вопросам
search
close
Категории
Задать вопрос
Подбор репетитора
О проекте
Обратная связь
home Вопросы и ответы folder Геометрия
fldityschith765
fldityschith765
Вопрос по геометрии:
сфера w проходит через вершины квадрата ABCD сторона которого равна 12 см. Найдите расстояние от центра сферы - точки o до плоскости квадрата если радиус OD образует с плоскостью квадрата угол, равный 60
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок - бесплатно!
bookmark_border
20.01.2017 19:11 ГЕОМЕТРИЯ remove_red_eye 23290 thumb_up 36
ответы и объяснения 2
maikbent55
maikbent55
ответ в приложенном рисунке.
Изображение к ответуrotate_right
21.01.2017 06:03 thumb_up 19
Otvetstvennyi
ответ-привет
Так как все точки квадрата лежат на сфере, то они равноудалены от точки О. Значит пирамида ОABCD - правильная, О - ее вершина. Тогда проекция О на плоскость ABCD - точка пересечения диагоналей (обозначим ее точкой Н).
ОН - искомое расстояние. Проекция OD на плоскость квадрата - отрезок DH, значит угол ODH = 60 градусов. DH - половина диагонали квадрата (вся диагональ равна 12 корней из 2), то есть DH = 6 корней из 2.
tg(ODH) = OH/DH, OH = DH*tg(OGH) = (6 корней из 2)*(тангенс 60 градусов) = (6 корней из 2)*(корень из 3) = 6 корней из 6.
ответ: 6 корней из 6.