Объяснение:
а)
Фигура параллелограм.
a=5 кл
h=4кл
S=?
Решение.
S=a*h
S=5*4=20
ответ: 20 кл²
б)
Фигура параллелограм.
а=3кл
h=7кл
S=?
Решение
S=a*h
S=3*7=21 кл²
ответ: 21кл²
в) фигура ромб.
D1=4кл
D2=6кл
S=?
Решение
S=1/2*D1*D2
S=6*4/2=12 кл²
ответ: 12кл²
г) фигура параллелограм
а=6кл
h=5кл
S=?
Решение
S=a*h
S=5*6=30кл²
ответ: 30кл²
д) Фигура ромб
D1=7кл
D2=6кл
S=?
Решение
S=1/2*D1*D2
S=7*6/2=21кл²
ответ: 21кл.
е)
Фигура прямоугольник
S=a*b-2*S1-2*S2
S1=S3
S2=S4
Площадь прямоугольного треугольника равна половине произведения двух катетов.
S1=1/2*3*3
S2=1/2*2*2
S=5*5-2*3*3*1/2-2*2*2*1/2=25-9-4=12кл²
ответ: 12кл²
Я продлеваю перпендикуляры HK и HM за точку H до пересечения с BA в точке A1 и BC в точке C1 (ну, точки лежат на продолжениях... из за того, что ∠ABC острый, эти точки есть и лежат где положено :) )
Для треугольника A1BC1 H - точка пересечения высот (ну двух-то точно :) - A1M и C1K), поэтому A1C1 перпендикулярно BH, и, следовательно, параллельно AC;
то есть ∠BAC = ∠BA1C;
Точки K и M лежат на окружности, построенной на A1C1, как на диаметре, поэтому
∠BA1C + ∠KMC = 180°; как противоположные углы вписанного четырехугольника. Или, что же самое, ∠BA1C = ∠BMK;
следовательно ∠BAC = ∠BMK;
и треугольники ABC и BMK имеют равные углы. То есть, подобны.
Следствие, которое важнее задачи :) Четырехугольник AKMC - вписанный. То есть через эти 4 точки можно провести окружность.
Дополнение. Тривиальный решения тут такой.
∠KHB = ∠A; ∠MHB = ∠C;
BK = BH*sin(A) = BC*sin(C)*sin(A);
BM = BH*sin(C) = BA*sin(A)*sin(C);
То есть у треугольников ABC и MBK угол B общий, и стороны общего угла пропорциональны BM/BA = BK/BC = sin(A)*sin(B); значит треугольники подобны.
коэффициент подобия sin(A)*sin(C), что тоже полезное следствие.