1. PABCD - правильная пирамида. PO_|_ (ABCD) РА=10 см, РО=8 см, <POA=90° ΔPOA. по теореме Пифагора: AO²=PA²-PO² AO²=10²-8², AO²=36, AO =6 см. ΔADC: AC=2AO, AC=12 см, AD=DC=a по теореме Пифагора: AO²=AD²+CD² 12²=a²+a², 144=2a², a²=72, a=√72, a=6√2 см ответ: сторона основания АВ=6√2 см
2. Sбок.пов. =(1/2)Pосн*h h - апофему боковой грани правильной пирамиды найдем по теореме Пифагора из ΔАКР: PK_|_AB, AK=(1/2)AB, AK=3√2 см PA²=AK²+PK², 10²=(3√2)²+PK², PK²=100-18, PK²=82, PK=√82 см S=(1/2)*4*6√2*√82=12√164=12√(4*41)=24√41 S бок.=24√41 см²
ответ:Оба треугольника равнобедренные,т к АС=DB и точка О делит их пополам,т е
АО=О-В;DO=OC
Углы при основании равнобедренных треугольников равны между собой
<D=<C=60 градусов
Угол при вершине равен
<DOC=180-60•2=60 градусов
Как оказалось,все углы треугольника DOC равны по 60 градусов,значит треугольник даже не равнобедренный,а равносторонний
Треугольники DOC и АОВ равны между собой по первому признаку равенства треугольников
АО=ОС;ОB =ОD; по условию задачи
<DOC=<AOB,как вертикальные
Равенство треугольников доказано,поэтому все углы треугольника АОВ равны по 60 градусов
<ВАО=60 градусов
Объяснение: