Раз уж первую задачу решили правильно, её расписывать не буду. 2) В прямоугольном треугольнике катет равен среднему пропорциональному гипотенузы и проекции этого катета на гипотенузу. Другими словами, квадрат катета равен произведению гипотенузы на проекцию катета. АВ²=АН·АС=10·40=400, АВ=20 - это ответ.
3) Точка, равноудалённая от сторон треугольника является центром вписанной в него окружности. Он, в свою очередь, лежит на пересечении биссектрис треугольника, значит АО - биссектриса угла АВС. ∠АВС=2∠АВО=2·39=78°. В тр-ке АОС ∠ОАС+∠ОСА=(∠ВАС+∠ВСА)/2=(180-∠АВС)/2=(180-78)/2=51°. ∠АОС=180-(∠ОАС+∠ОСА)=180-51=129° - это ответ.
PS. Так как точка О не является центром описанной вокруг треугольника окружности, нельзя говорить о том, что угол АВС вписанный и, тем более, что угол АОС центральный и что он равен двум вписанным.
Трапеция АВСД, АД=10, ВС=5, АС=12, ВД=9 проводим высоту СН на АД Площадь трапеции =1/2*(АД+ВС) * СН Из точки С проводим прямую параллельную ВД до пересечения с продолжением основания АД в точке К. Четырехугольник НВСК - параллелограмм, ВС=ДК=5, ВД=СК=9, АК=АД+ДК=10+5=15, СН - высота треугольника АСК площадь треугольника АСК = 1/2АК*СН, но АК=АД+ДК(ВС) т.е. площадь треугольника АСК=площадь трапеции АВСД, площадь треугольника АСК=корень(р * (р-АС)*(р-СК)*(р-АК)), где р -полупериметр полупериметр треугольника АСК=(12+9+15)/2=18 площадь треугольника АСК=корень(18 *6*9*3)=54 = площадь трапеции АВСД
нижние углы острые и равны
пусть верхнее основание и боковая сторона = b
тогда нижнее основание =2b
опустим высоты из верхних углов
они разделят нижнее основание на отрезки b/2 ;b ;b/2
тогда нижний угол cos<A = (b/2) / b = 1/2 = cos60 ; <A =60
углы <A ; <B -смежные ; <B = 180 - <A = 180 -60 =120
найти углы равнобедренной трапеции : 60;120;120;60