Дано :
Четырёхугольник ABCD — параллелограмм.
AD = 30.
Отрезки BD и AC — диагонали.
АС = 43.
BD = 35.
Найти :
S(ABCD) = ?
Диагонали параллелограмма, пересекаясь, делятся пополам и образуют четыре равновеликих (равных по площади) треугольника.То есть —
AO = OC = 43 : 2 = 21,5.
DO = OB = 35 : 2 = 17,5.
S(∆AOD) = S(∆AOB) = S(∆BOC) = S(∆DOC).
Рассмотрим ∆AOD.
Найдём его площадь по формуле Герона —
Где s — площадь треугольника; р — полупериметр (одна вторая суммы сторон треугольника) треугольника; а, b и с — длины сторон треугольника.
Найдём р ∆AOD.
p(∆AOD) = 0,5*(AO + DO + AD) = 0,5*(21,5 + 17,5 + 30) = 0,5*69 = 34,5.
Теперь подставляем всё в формулу Герона —
По выше сказанному S(ABCD) =
(10√343,1025) * 4 = 40√343,1025 (ед²).
40√343,1025 (ед²).
Пусть ABC - равнобедренный
∟B = 120 °, АС = 18 см, АК - высота.
В ΔАВС проведем высоту BD к основанию АС.
По свойству равнобедренного треугольника BD - биссектриса и медиана
AD = DC = 1 / 2AC = 18: 2 = 9 (см) (BD - медиана).
∟AВD = ∟DBC = 1 / 2∟В = 120 °: 2 = 60 ° (BD - биссектриса).
Рассмотрим ΔABD - прямоугольный (∟D = 90 °, BD - высота):
∟BAD + ∟ABD = 90 °; ∟BAD = 30 °; ∟BAD = ∟BCD = 30 ° (ΔABC - равнобедренный).
Рассмотрим ΔАКС (∟К = 90 °, АК - высота):
АК - катет, лежащий напротив угла 30 °, тогда АК = 1 / 2АС; АК = 18: 2 = 9 (см).
ответ: Высота AK= 9 см