Да, существуют, только не три, а четыре пары параллельных диагоналей, так как в правильном восьмиугольнике четыре пары параллельных сторон. При соединении вершин этих сторон и получаются параллельные диагонали в виде сторон прямоугольников. Для доказательства их параллельности нужно именно это и доказать, используя величины углов. Угол восьмиугольника имеет величину 180*(8-2)/8 = 135 градусов, а между стороной и радиусом 135/2 = 67,5 градусов. Так как диагональ опирается на угол 360*3/8 = 135 градусов, то угол между диагональю и радиусом = (180-135) / 2 = 22,5 градуса Итак, угол в четырёхугольнике между стороной и диагональю составляет 67,5 + 22,5 = 90 градусов. И так можно доказать по всем углам. Значит, эти диагонали являются сторонами прямоугольника, а стороны прямоугольника - параллельны.
Можно найти только УГЛЫ треугольника АВС.
Решение на всякий случай.
Биссектриса BD в ABC пересекает сторону AC под углом 100°, тогда если <ADB =100°, то <CDB = 80°, как смежный с ним.
В треугольнике DBC BD=BC (дано) => углы <BDC = CDВ = 80° как углы при основании равнобедренного треугольника.
<DBC = 180° - 2*80° = 20° по сумме внутренних углов треугольника.
А так как BD - биссектриса, то угол В = 40°.
<A = 180° - 80° - 40° = 60° (по сумме внутренних углов треугольника).
ответ: <A=60°, <B=40° и <C=80°.