Площадь правильного шестиугольника, вписанного в окружность, равна сумме площадей шести правильных треугольников со сторонами, равными радиусу этой окружности. Тогда площадь одного треугольника равна D/6. По формуле эта площадь равна (√3/4)*a², где а=R. Следовательно, √3*R²/4=D/6 => R²=2D√3/9. R=√(2D√3)/3 По Пифагору квадрат диагонали вписанного квадрата равен (2R)²=2а², где а - сторона квадрата. а=2R/√2 = R√2, а площадь - S= а² =2R² . Подставим найденное значение R, тогда сторона вписанного квадрата: а=√(2D√3/9)*√2=√(4D√3)/3. площадь вписанного квадрата: S=a²= 4D√3/9.
Угол,смежный углу, равному 132 градусу будет равен:180-132=48 Проведенные высоты образуют 4 прямоугольных треугольника (два маленьких и два больших),то угол = 48 градусов - один из углов маленького прямоугольного треугольника,следовательно второй угол будет равен 90-48=42 градуса;угол,равный 42 градуса также является одним из углов большого прямоугольного треугольника,второй непрямой угол которого лежит в вершине равнобедренного треугольника.Следовательно,угол при вершине равен 90-42=48 градусов Т.к. данный треугольник равнобедренный,то углы при основании равны и их сумма сост.180-48=132 градуса Значит,один угол при основании равен 132/2=66
Следовательно, √3*R²/4=D/6 => R²=2D√3/9.
R=√(2D√3)/3
По Пифагору квадрат диагонали вписанного квадрата равен
(2R)²=2а², где а - сторона квадрата.
а=2R/√2 = R√2, а площадь - S= а² =2R² .
Подставим найденное значение R, тогда
сторона вписанного квадрата:
а=√(2D√3/9)*√2=√(4D√3)/3.
площадь вписанного квадрата:
S=a²= 4D√3/9.