Есть 3 признака равенства треугольников: I ПРИЗНАК РАВЕНСТВА ТРЕУГОЛЬНИКОВ : Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. II ПРИЗНАК РАВЕНСТВА ТРЕУГОЛЬНИКОВ: Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны. III ПРИЗНАК РАВЕНСТВА ТРЕУГОЛЬНИКОВ: Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Вот если провести через ЭТУ вершину тупого угла прямую перпендикулярно МЕНЬШЕЙ диагонали, а ТУ САМУЮ сторону, к которой проведена (из ЭТОЙ вершины) высота, продлить до пересечения с этим перпендикуляром, то получится прямоугольный треугольник, у которого катеты равны диагоналям ромба, а высота к гипотенузе делит их на отрезки n и m + (m + n) = n + 2*m; (сама гипотенуза равна 2*(m + n)) Отсюда высота к гипотенузе определяется так h^2 = n*(n + 2*m); и меньшая диагональ ромба (которая соединяет вершины тупых углов) n^2 + h^2 = d^2 = 2*n^2 + 2*m*n = (m + n)^2 + n^2 - m^2; Большая диагональ D^2 = 4*(m + n)^2 - d^2 =3*(m + n)^2 + m^2 - n^2;
внешний угол = 180 градусов - внутрениий
значит, внутренний = 180-80=100
т.к. треугольник равнобедренный, то оставшиеся 2 угла равны между собой, значит, каждый можно принять за их, а их сумма будет х+х=2х
составим уравнение: 180=100+2х
отсюда находим, что х=40
аналогично в б)
х=50