Объяснение: проведём к основанию треугольника высоту Н. Она разделила треугольник на 2 прямоугольных треугольника, в котором боковая сторона становится гипотенузой 24см. Мы знаем, что угол при основе 30°. По свойствам угла 30°, катет, который лежит против него равен половине гипотенузы, значит проведённая высота = 24÷2=12. По теореме Пифагора найдём половину основания треугольника: 576 -144=432. Половина основания=√432. Основание = 2×√432. Зная высоту найдём площадь треугольника:
Пусть M — середина AB, а C′ — основание высоты, опущенной из точки C на сторону AB. Пусть E — середина отрезка CH, где H— ортоцентр треугольника ABС. Искомый угол равен удвоенному углу MEH, поскольку ∠MEН является вписанным углом, опирающимся на рассматриваемый в задаче отрезок. Пусть O— центр описанной окружности треугольника ABC. Поскольку CE=CH/2=OM, причем CE и OM параллельны, то четырехугольник OMECявляется параллелограммом. Отсюда следует, что ∠MEC′=∠OCН. Известно, что ∠OCH=|∠A−∠B|. Этот угол легко считается, если использовать тот факт, что ∠OCA=90∘−∠AOC/2=90∘−∠B=∠HCB, а также, что ∠C=180∘−∠A−∠В. Тогда искомый угол равен 80
ответ: S=6√432=72√3
Объяснение: проведём к основанию треугольника высоту Н. Она разделила треугольник на 2 прямоугольных треугольника, в котором боковая сторона становится гипотенузой 24см. Мы знаем, что угол при основе 30°. По свойствам угла 30°, катет, который лежит против него равен половине гипотенузы, значит проведённая высота = 24÷2=12. По теореме Пифагора найдём половину основания треугольника: 576 -144=432. Половина основания=√432. Основание = 2×√432. Зная высоту найдём площадь треугольника:
S=√432÷2×12=6√432 = 6×√16×√9×√3=
=6×4×3√3=72√3