Пусть в данной трапеции основания ВС и АD. Определение: Высота трапеции — расстояние между прямыми, на которых лежат основания трапеции, т.е. любой общий перпендикуляр этих прямых. Тогда высота СН, опущенная из С на AD, равна АО=60 мм. Высота равнобедренной трапеции, опущенная из тупого угла, делит основание на отрезки, больший из которых равен длине средней линиитрапеции. АН=средней линии трапеции. Т.к. ∆ АСН прямоугольный и отношение катета к гипотенузе равно 3:5, этот треугольник из троек Пифагора ( египетский), АН=80 мм ( и по т.Пифагора получим тот же результат) Тогда АН равна длине средней линии. Площадь трапеции равна произведению высоты на среднюю линию, т.е. на полусумму оснований. S=60•80=4800 мм² или 48 см²
Чтобы использовать все данные из условия, проведем АО к продолжению ВС в сторону В. Тогда ОС равно 80 мм, ВС=80-45=35 мм Поскольку трапеция равнобедренная, ∆ АОВ=∆ СHD ( по равным катету и гипотенузе), и АД=80+45=125 мм Тогда полусумма оснований (ВС+АD):2=(35+125):2=80 (мм) Площадь, естественно, тоже будет 4800 мм²
1) По условию угол АОС относится к углу СОВ как 1:7. Тогда пусть угол АОС = 1Х, тогда угол СОВ = 7Х.
угол АОС+уголСОВ = углу АОВ
угол АОС+уголСОВ = 144
1Х+7Х=144
8Х=144
Х=144/8
Х=18.
угол АОС=18, тогда уголСОВ = 7*18=126.
2) Пусть биссектрисой угла СОВ будет луч ОН, тогда угол СОН= углу НОВ. Угол СОН+угол НОВ= углу СОВ = 126, значит угол СОН= углу НОВ= 126/2=63.
3) Угол, образованный лучом ОА и биссектрисой угла СОВ - это угол АОН. Угол АОН = угол АОС+уголСОН= 18+ 63 = 81.
ответ: угол СОВ= 126, угол АОН = 81.