Объяснение:
Треугольник , у которого один угол прямой, а два других острые.
Гипотенуза.
Если острый угол прямоугольного треугольника равен 30°, то катет,лежащий напротив него равен половине гипотенузы.
№4
угол BAС=180-(90+42)=48 градусов.
№5
АВ=ВС*2=12*2=24см
№6
Бокова сторона АС является гипотенузой треугольника АСД. Катет СД равен половине гипотенузы. СД=АС:2=7:2=3,5 см.Поэтому угол САД= 30°. Угол АСВ= 180°-(90°+30°)=60°,Угол АСВ=СВА=60°,значит и угол САВ=60°
ответ: в равнобедренном треугольнике АВС все углы равны 60°
№7
Высота ,проведенная на гипотенузу равнобедренного прямоугольного треугольника является медианой и делит его ещё на два равнобедренных прямоугольных треугольника .В получившихся треугольниках эта высота становится катетом. 18:2= 9см,значит и высота ,проведенная на гипотенузу равнобедренного прямоугольного треугольника равна 9 см.
угDAC=угMAB; угDAM=угАМВ(т.к. это накрест лежащие углы при параллельных AD и BC) Значит уг.ВАМ=угВМА и треугольник
АВМ - равнобедренный, то есть АВ=ВМ
угADM=угDMC(т.к. это накрест лежащие углы при параллельных AD и BC ); угADM=угMDC значит угMDC=DMC
угDMC и BMN вертикальные то есть равны. То есть MDC=BMN, но MDC=BNM(т.к. это накрест лежащие углы при параллельных AN и DC) значит BMN=BNC и треугольник BMN - равнобедренный и BN=BM.
Мы имеем BM=BM;BM=BA то есть DC=BA=BN=AN/2=10/2=5cм
треугольник DCM равнобедренный (т.к. MDC=DMC) то есть DC=MC=5см
AD=BC=CM+MB=5+5=10см
P=10+10+5+5=30См Чертеж как нибудь сама
Дано: АС = 9см
ВД = 40см
АК : КС = 3 : 2
Найти: S ΔFKB
3 + 2 = 5 (частей) составляют 9см
АК = 9 : 5 * 3 = 27/5 (см)
АВ определим по теореме Пифагора из ΔАОВ (точка О- точка пересечения диагоналей); АО = 4,5см; ВО = 40 : 2 = 20 (см).
АВ = √(4,5^2+20^2) = √(20,25+400) = √420,25 = 20,25(cм)
S ΔAKB = 1/2OB * AK = 1/2*20* 27/5 = 270/5 = 54 (кв.см)
ответ: 54 кв.см - площадь Δ АКВ