Сумма векторов строится так: к концу первого "пристраивается" (параллельным переносом) второй, к концу второго - третий и так далее. Результирующий вектор (суммы) - это начало первого вектора и конец последнего.В нашем случае угол между векторами, идущими из центра к вершинам правильного 17-ти угольника равен 360°/17. Тогда угол между двумя векторами, образующими сумму двух этих векторов по правилу параллелограмма, равен 180°-360°/17 = (17*180-2*180)/17=15*180/17.Таких углов у нас 17, их сумма равна 15*180°.Но и сумма углов правильного 17-ти угольника по формуле равна180°(n-2), то есть для нашего случая 15*180°.Значит вектора, составляющие сумму указанных векторов, образуют ПРАВИЛЬНЫЙ 17-ти угольник, а это значит, что конец последнего (17-го) вектора попадет в начало первого, замкнув ломаную линию суммы векторов.Итак, сумма указанных векторов равно нулевому вектору, то есть равна нулю, что и требовалось доказать.
1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)
2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)