Пусть данная сфера касается стороны bcтреугольника abc в точке k. тогдаbk = bn = 1, am = an = 1, cm = 2 . am = 2, ck = cm= 2.сечение сферы плоскостью треугольника abcесть окружность, впмсанная в треугольник abc, причем центр o1 этой окружности - ортогональная проекция центра o сферы на плоскость треугольника abc. значит, oo1 - высота пирамиды oabc.пусть r - радиус окружности, вписанной в треугольник abc, p - ролупериметр треугольника, s - площадь. поскольку треугольник abc равнобедренный, отрезкок cn - его высота. тогдаcn =  =  = 2,s = ab . cn = 2, r = s/p = 2/4 = /2.из прямоугольного треугольника oo1nнаходим, чтоoo1 =  =  = 3/.следовательно,v(oabc) = s . oo1 = 2 . 3/ = 2.
основание ABCD - параллелограмм ;
AB =CD =3 см , BC =AD =7 см , BD =6 см ;
SO ⊥ (ABCD) ,SO =H =4 см ,O - точка пересечения диагоналей .
------
SA =SC -? , SB=SD -?
---
Известно: AC²+BD² = 2(AB²+BC²)
⇒AC =√(2(AB²+BC²) - BD²) =√(2(3²+7²) -6²) =4√5 (см).
Из ΔAOS по теореме Пифагора :
SA =√(AO²+SO²) =√((AC/2)²+SO²)=√(2√5)²+4²) =6 (см).
Аналогично из ΔBOS:
SB =√(BO²+SO²) =√((BD/2)²+SO²)=√(3²+4²) =5 (см).
* * * диагонали параллелограммы в точке пересечения делятся пополам * * *
ответ: SA =SC = 6 см SB=SD =5 см.