ответ:
сумма углов, примыкающих к стороне, равна 180 градусам, поэтому сумма их половин, отсекаемых биссектрисами, равна 90 градусам. отсюда следует, что efgh -- прямоугольник, и сумма квадратов его сторон равна удвоенному квадрату диагонали.
пусть e -- точка пересечения биссектрис углов a и d. середина k стороны ad равноудалена от вершин прямоугольного треугольника ade. при этом угол ked равен kde, а также cde, поэтому ke параллельна cd и является частью средней линии kl параллелограмма. на этой же линии лежит и точка g из аналогичных соображений.
таким образом, eg=kl−ke−gl=ab−1\2ad−1\2bc=ab−ad=3\2 есть длина диагонали. следовательно, в ответе получится 2(3\2)2=9\2.
объяснение:
Если катет и противолежащий острый угол одного прямоугольного треугольника соответственно равны катету и противолежащему острому углу другого прямоугольного треугольника, то такие треугольники равны.
В прямоугольном треугольнике катету противолежит острый угол ( прямой противолежит гипотенузе) и сумма острых углов 180°-90°=90°.
Поэтому: если противолежащий катету острый угол одного прямоугольного треугольника равен противолежащем острому углу другого, то прилежащие к равным катетам острые углы также равны
К равным катетам этих треугольников прилежат равные углы: прямой ( по условию) и найденный острый.
Такие прямоугольные треугольники равны по 2-му признаку равенства треугольников, т.е. по стороне и прилежащим к ней углам.