треугольникАВС, уголА=78, ВД и СЕ-высоты, треугольник АСЕ прямоугольный, уголАСЕ=90-уголА=90-78=12, треугольник ДОС прямоугольный, уголДОС=90-уголАСЕ=90-12=78, уголДОЕ=180-уголДОС=180-78=102
трапеция АВСД, АВ=СД, уголА=уголД, уголВ=уголС, ВС=18, АД=50, центр О-пересечение биссектрис углов трапеции, ВМ-прямая проходящая через вершину , центр О на АД =биссектриса угла В, угол АВМ=уголМВС=1/2уголВ, уголМВС=уголАМВ как внутренние разносторонние=уголАВМ, треугольник АВМ равнобедренный, АВ=АМ,
в трапецию можно вписать окружность если сумма оснований=сумма боковых сторон, ВС+АД=АВ+СД, 18+50=2АВ, АВ=СД=34=АМ, проводим высоты ВН и СК на АД, НВСК-прямоугольник ВС=НК=18, треугольник АВН=треугольник КСД как прямоугольные по гипотенузе и острому углу, АН=КД=(АД-НК)/2=(50-18)/2=16, треугольник АВН, ВН-высота трапеции и треугольника АВМ=корень(АВ в квадрате-АН в квадрате)=корень(1156-256)=30,
площадьАВСД=1/2*(ВС+АД)*ВН=1/2*(18+50)*30=1020
площадь АВМ=1/2АМ*ВН=1/2*34*30=510
площадьАВМ/площадьАВСД=510/1020=1/
Сечением будет равнобедренная трапеция, т.к. основания призмы лежат в параллельных плоскостях, то секущая плоскость их будет пересекать по параллельным прямым.
Пусть К и М середины рёбер АС и ВС, тогда МК средняя линия, по свойству она параллельна третьей стороне АВ и равна её половине - 4 см (стороны основания равны по 8см)
Секущая плоскость проходит через точку А1 и параллельна МК, т.е. совпадает с А1В1 (МК II АВ II А1В1). А1В1МК - трапеция с основаниями А1В1=8см и МК=4см
Боковые стороны равны из равенства прямоугольных треугольников АА1К и ВВ1М (по двум катетам). А1К и В1М - гипотенузы этих треугольников. Их находим по теореме Пифагора √3²+4²=√9+16=√25=5см.
Р=4+8+2·5=22см
AD=15см.