В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
По Пифагору:
Боковое ребро пирамиды SC=√(CO²+SO²) = √(313/3).
Апофема (высота боковой грани) SH=√(НO²+SO²) = √(745/12).
Боковая поверхность Sбок = (1/2)*3*АВ*SH =(39/4)*(√(745/3).
Нижнее основание в два раза больше средней линии другого треугольника и равно 25
Угол 1 равен углу 2 так как диагональ биссектриса
Угол 3 равен углу 1 как внутренние накрест лежащие
Значит угол 2 равен углу 3
Треугольник с этими углами равнобедренный и боковая сторона равна большему основанию 25
Проведем высоты с вершин верхнего основания на нижнее.
Получим два равнобедренных треугольника, с катетами (25-11):2=7
По теореме Пифагора высота
h²=25²-7²=(25-7)(25+7)=18·32=9·64=(3·8)²=24²
h=24
S=(a+b)·h/2=(11+25)·24/2=432 кв. см