Обозначил меньшее основание - а, большее основание - b. Тогда периметр трапеции, с учётом условия равенства меньшего основания и боковых сторон, можно записать так Р=3*а+b. Площадь трапеции выглядит так: S=1/2*(a+b)*h, подставим известные нам значения 128=1/2*(a+b)*8 или a+b=(128*2)/8; a+b=32. Выразим из последнего уравнения b и подставим его в уравнение периметра: b=32-a; P=3*a+32-a; получим 52=2*а+32; 2а=52-32; 2а=20; а=10 см. b=32-10=22 см. Получили, что боковые стороны и меньшее основание равны 10 см, а большее основание равно 22 см.
Объяснение:
1 уровень
1)
ЕF=1/2×AC=1/2×14=7 cм
<ВЕF=<A=72 градуса
2)
О - точка пересечения медиан, которые делятся в соотношении 2 : 1 от вершины
АН медиана на сторону ВС является высотой и биссектрисой
ВН=СН=ВС:2=10:2=5 см
АН=корень (АВ^2-ВН^2)=
=корень (13^2-5^2)=корень 144=12 см
АО=2/3×АН=2/3×12=8 см
ОН=1/3×АН=1/3×12=4 см
ВО=корень (ВН^2+ОН^2)=
корень (5^2+4^2)=корень 41 см
2 уровень
1)
АВ=СD=2×FO=2×5=10 см
AD=BC=2×OE=2×4=8 см
P=2(AB+BC)=2(10+8)=39 cм
2)
О - точка пересечения меддиан делит их в соотношении 2 :1 от вершины
Медиана ВН на сторону АС является высотой и биссектрисой
АН=НС=АС:2=14:2=7 см
ВН=корень(АВ^2-АН^2)=
=корень (25^2-7^2)=
=корень 576=24 см
ВО=2/3×ВН=2/3×24=16 см
ОН=1/3×ВН=1/3×24=8 см
АО=корень (АН^2+ОН^2)=
=корень (7^2+8^2)=корень 113 см
АК=3/2×АО=3/2×корень113 см
СN=АК=3/2×корень113 см
3 уровень
Тр-к АND~MNB по 2 углам (АND=<MNB - как вертикальные, <MBN=<ADN - как накрест лежащие при параллельных ВС и АD и секущей ВD), тогда
DN/BN=AD/BM
BC=AD=16 cм
BM=MC=BC:2=16:2=8 см
DN/BN=16/8=2
Тр-к CND~PNB
по 2 углам (<СND=<PNB - как вертикальные,<CDN=<PBN - как накрест лежащие при АD и ВС и секущей ВD), тогда
СD/PB=DN/BN
CD/PB=2
PB=1/2×CD
CD=AB
PB=1/2×AB
PB=AP=6 см
AB=2×AP=2×6=12 cм
S=AB×AD×sinA=16×12×1/2=96 cм^2