Объяснение:
1) Строю окружность с центром в т. О;
2) Беру т. В вне окружности , точку А на окружности, соединяем→ ВА- касательная ; из точки В провожу вторую касательную ВС.
3) Измеряю радиус ОА=3 см
Измеряю отрезки ВА и ВС ( это отрезки касательных) : ВА=4,1 см , ВС=4см. Примерно одинаковые⇒отрезки касательных проведенных из одной точки равны ( надо запомнить этот факт). Измеряю ВО=5,1 см.
Применяю т. Пифагора для ΔОАВ, ∠ВАО=90°.
ОВ²=5,1²=26,01≈26
ОА²+ВА²=3²+4,1²=9+16,81=25,81≈26 . Получили ОВ²=ОА²+ВА², т.е т. Пифагора выполняется .
Рассмотрим прямоугольные треугольники ABC и DEF с прямыми углами C и F, у которых AC = DF, M и N — середины AC и DF соответственно, BM = EN.
Поскольку AC = DF, CM = AC / 2, FN = DF / 2, то CM = FN. Рассмотрим треугольники BCM и EFN. Они прямоугольные, CM = FN по доказанному, BM = EN по условию. Тогда треугольники BCM и EFN равны по катету и гипотенузе, а значит, BC = EF.
Рассмотрим треугольники ABC и DEF. Они прямоугольные, AC = DF по условию, BC = EF по доказанному. Значит, они равны по двум катетам, что и требовалось доказать.