1)нет не может быть параллельной плоскости бета 2)да может пересекать плоскость бета 3)нет не может лежать в плоскости бета оъяснение: естественно. эти прямые пересекаются. поскольку прямая а лежит в плоскости альфа, она не может пересечься с плоскостью бета в точке, не лежащей в плоскости альфа. следовательно, прямая а проходит через точку, лежащую одновременно в плоскостях альфа и бета. а такие точки образуют прямую с. следовательно, прямая а имеет общую точку с прямой с, причём единственную (поскольку она пересекается с плоскостью бета, то имеет с ней единственную общую точку). следовательно, эти прямые пересекаются.
Диагонали параллелепипеда с диагоналями основания (ромба) и боковым ребром образуют прямоугольный треугольник. По т. Пифагора, зная катеты, можно найти гипотенузы (диагонали) этих треугольников. Один из катетов - длина бокового ребра 15 см. Другие катеты - диагонали ромба. Ромб диагоналями делится на 4 равных прямоугольных треугольника с гипотенузой - сторона ромба. Диагонали - биссектрисы углов ромба. Диагонали в точке пересечения делятся пополам. Рассматриваем один из образовавшихся треугольников. Углы - 90°, 30°, 60°. Против угла 30° лежит катет в два раза меньше гипотенузы. 8/2=4 - половина диагонали ромба. 4*2=8 см - меньшая диагональ ромба. √(8²-4²)=4√3 - вторая полудиагональ ромба, 4√3*2=8√3 см - большая диагональ ромба. Большая диагональ параллелепипеда - √(15²+(8√3)²)=√417 см; Меньшая диагональ - √(15²+8²)=√289 см.