Раз AB - диаметр, то треугольник прямоугольный. Таким образом угол С = 90°. Теперь, если обозначить центр описанной окружности О, то треугольники OBC и OCA равнобедренные (с длиной равных бедер равных радиусу окружности). Рассмотрим OBC с известным углом при вершине О равным 68°. Очевидно, его углы при основании будут равны (180° - 68°)/2 = 112/2 = 56°. То есть один углов (угол CBA или B) в нашем исходном прямоугольном треугольнике равен 56°. А второй угол (при вершине A) будет равен 90° - 56° = 34°
Если провести высоту и проекцию бокового ребра, то получится прямоугольный треугольник, в котором гипотенуза равна 4 см, а угол наклона ребра 45°. Высоту ищем через синус; H= 4*sin 45° = 2√2 см. Площадь основания найдем, ну. например по формуле Герона. p= (5+5+6)/2 = 8 S =√(8*2*3*3) =12 см². V= 2√2*12 = 24√2 cм³.
2. Высота, боковое ребро и его проекция образуют прямоугольный треугольник. Гипотенуза b, а катет равен половине диагонали квадрата а√2/2. Высоту находим по теореме Пифагора : H=√(b²-(a√2/2)²) = √(b² -a²/2). S = a². V = 1/3 a²√(b²-a²/2).
Теперь, если обозначить центр описанной окружности О, то треугольники OBC и OCA равнобедренные (с длиной равных бедер равных радиусу окружности). Рассмотрим OBC с известным углом при вершине О равным 68°. Очевидно, его углы при основании будут равны (180° - 68°)/2 = 112/2 = 56°. То есть один углов (угол CBA или B) в нашем исходном прямоугольном треугольнике равен 56°. А второй угол (при вершине A) будет равен 90° - 56° = 34°