Проведём высоту к основанию. Основание при этом будет поделено на два равных отрезка, т.к. высота, проведённая к основанию равнобедренного треугольника, является медианой и биссектрисой, отрезки основания равны по 10 см. Получаем прямоугольный треугольник с катетом 10 и гипотенузой 26 (боковая сторона), по теореме Пифагора находим высоту: 26²-10²=x²
676-100=x²
x²=576
x=24 см
Площадь треугольника рассчитывается по формуле ½*высота*основание, к которому она проведена. Подставляем: ½*24*20=240 см²
2. 4+7=11 (частей) Одна часть: 44/11 = 2 Большее основание равно: 2*4=8 см Меньшее основание равно: 2*7=14 см
3. Диагонали делят острые углы трапеции пополам => получаем ромб, у которого все стороны равны 8 см. Р=8+8+8+10=34 см
4. Имеем трапецию ABCD. Основания - AD, BC. Диагонали пересекаются в точке P. MN - средняя линия, пересекаемая сторону BD в точке О и AC в точке K. В треугольнике ABC средняя линия MK равна 1/2*BC, а средняя линия KN в треугольнике ACD = 1/2*AD. Треугольник BCP одновременно прямоугольный и равнобедренный, соответственно высота, опущенная из точки P к вершине, является медианой. Она равна 1/2*BC. В треугольнике APD, высота, опущенная из точки P, - медиана. Равна 1/2*AD. Что и требовалось доказать.
Объяснение:
Проведём высоту к основанию. Основание при этом будет поделено на два равных отрезка, т.к. высота, проведённая к основанию равнобедренного треугольника, является медианой и биссектрисой, отрезки основания равны по 10 см. Получаем прямоугольный треугольник с катетом 10 и гипотенузой 26 (боковая сторона), по теореме Пифагора находим высоту: 26²-10²=x²
676-100=x²
x²=576
x=24 см
Площадь треугольника рассчитывается по формуле ½*высота*основание, к которому она проведена. Подставляем: ½*24*20=240 см²
ответ: высота равна 24 см, площадь — 240 см²