Нехай даний трикутник ABC. За умовою трикутник АВС – рівнобедрений з основою АВ, тоді бічні сторони рівні АС = ВС, кути при основі рівні ﮮСАВ = ﮮСВА. За означенням бісектриси АN маємо ﮮСАВ = 2ﮮСАN. За означенням бісектриси ВМ маємо ﮮСВА = 2ﮮСВМ. Розглянемо трикутники AСN і BCM. За стороною АС = ВС та прилеглими кутами ﮮСАN = ﮮСВМ, кут АСВ спільний трикутники рівні ∆САN = ∆СВМ. У рівних трикутників рівні відповідні сторони АN = BM. А вони є шуканими бісектрисами рівнобедреного трикутника, проведені з вершин кутів при основі.
Параллелограмм АВСД. Проведем биссектрису угла А, она пересечет сторону ВС в точке Н (<BAН=<ДAН). Вторая биссектриса ула В перескает сторону АД в точке М (<АВМ=<СВМ). У параллелограмма углы, прилежащие к любой стороне, в сумме равны 180° (<А+<В=180). Значит половины этих углов <ВАН+<АВМ=90° Тогда в ΔАВК <АКВ=180-(<ВАК+<АВК)=180-90=90°. Проведем окружность диаметром АВ. Если вписанный угол опирается на диаметр этой окружности, значит он -прямой. У нас <АКВ=90°, значит он опирается на диаметр и является вписанным углом в эту окружность. Вписанный угол — угол, вершина которого лежит на окружности, значит К лежит на окружности, что и требовалось доказать
Вертикальные углы
120:2 = 60 градусов
Объяснение:
должно быть правильно