Дан параллелограмм ABCD На продолжении диагонали АС за вершины А и С отмечены точки М и N соответственно так, что АМ = CN Докажите, что MBND –
Доказываешь, что два треугольник AMD и CNB:АМ = CN по условию,АВ=СВ, т.к. это стороны параллелограмма.По первому признаку равенства треугольников: AMD = CNBИз того же равенства треугольников получаешь, чтоПроверенные ответы содержат наджную, заслуживающую доверия информацию, оценнную командой экспертов. На «Знаниях» вы найдте миллионы ответов, правильность которых подтвердили активные участники сообщества, но Проверенные ответы — это лучшие из лучших.Диагональ ВD исходного параллелограмма АВСD осталась прежней, диагональACс каждой стороны увеличилась на одинаковую длину. Точка пересечения диагонали ВD и диагоналиМNосталась прежней и делит их, как и в исходном четырехугольнике, пополам.
Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то такой четырехугольник параллелограмм.
Решение задачи:
Доказательство строим на факте, что биссектриса AF делит угол BAD на два равных угла:
BAF = FAD
По правилу накрест лежащих углов при параллельных прямых AB и CD:
∠BAF = ∠ DFA.
Тогда углы FAD и DFA тоже равны, так как BAF = FAD. Значит, треугольник AFD – равнобедренный с основанием AF. Следовательно, AD = DF. По тем же причинам в треугольнике BCF BC = CF. В параллелограмме противоположные стороны равны – значит, BC = AD. Но тогда CF тоже равен AD, а значит, равен также FD. Если CF = FD, то F – середина CD.
Что и требовалось доказать.
вот так
Объяснение:
еще не знаю по моему так