6 ед.
Объяснение:
В правильной усеченной пирамиде в основаниях лежат правильные многоугольники, стороны которых соответственно равны между собой. Боковые грани такой пирамиды - равные между собой равнобокие трапеции. Радиусы окружностей, вписанных в основания, проведенные в точки касания сторон оснований с соответственной окружностью Н и Н1, перпендикулярны к сторонам оснований по свойству радиусов, проведенных в точки касания.
Проведем перпендикуляр из точки касания Н1М верхнего основания на нижнее основание. Тогда отрезок Н1Н перпендикулярен стороне основания АВ по теореме о трех перпендикулярах, то есть является искомой высотой боковой грани.
В прямоугольном треугольнике НН1М угол ∠НН1М = 30° по сумме острых углов. Следовательно, НН1 = 2·НМ по свойству катета, лежащего против угла 30°.
НМ = ОН - О1Н1 = 8-5 = 3 ед.
Высота боковой грани НН1 = 6 ед.
в нас почти такоэ вот
В четырёхугольник ABCD вписана окружность, АВ = 33, CD = 18. Найдите периметр четырёхугольника ABCD.
Решение.
Если в четырехугольник вписана окружность, то суммы его противоположных сторон равны, то есть для него можно записать следующее равенство:
AD+BC=AB+CD.
По условию задачи нам даны длины сторон AB=33 и CD=18, следовательно,
AD+BC=33+18=51
Периметр четырехугольника – это сумма длин всех его сторон, то есть
P=AD+BC+AB+CD,
и, подставляя известные числовые значения, имеем:
P=51+51=102.
ответ: 102.
Объяснение:
только с 33 и 18