1) т.к. один из углов треугольника равен 45 градусов, и он прямоугольный, то второй угол тоже = 45 градусов. Получается, что у прямоугольного треугольника два одинаковых угла, значит он равнобедренный, и катеты равны. ответ: второй катет 8дм.
2)т.к. мы выяснили что треугольник равнобедренный, то каждый катет равен 28/2=14. ответ: по 14 дм.
3)
АВС - основной треугольник
АD-высота
ВС-гипотенуза.
Когда мы опустили высоту, то получился прямоугольный треугольник АВD
Один угол = 45 градусов, значит и второй тоже, получаем равнобедренный треугольник
АD=BD.
Т.к. сумма гипотенузы и высоты, опущенной к ней равна 21 см,то
х-высота AD, получаем уравнение:
х+2х=21
3х=21
х=7
гипотенуза ВС=2х=2*7=14
ответ: Гипотенуза равна 14, выоста равна 7
OA=OB=OC (радиусы окружности)
OA=OB=OC=BA=BC => △BAO, △BCO равносторонние => ∠ABO=∠OBC=60 (в равностороннем треугольнике все углы равны 60)
∠ABC=∠ABO+∠OBC=120
∠ADC=180-∠ABC=60 (сумма противолежащих углов вписанного четырехугольника равна 180)
∠BAD=∠DCB=90 (вписанные углы, опирающиеся на диаметр)
2) BH=9; AC=24
AB=BC
AH=AC/2 (в равнобедренном треугольнике высота является медианой)
AB=√(AH^2+BH^2) = √(24^2/4 +9^2) =15
Центр вписанной в треугольник окружности - точка пересечения биссектрис.
Биссектрисы треугольника делятся точкой пересечения в отношении суммы прилежащих сторон к противолежащей, считая от вершины.
BO/OH =(AB+BC)/AC = 2AB/AC =30/24 =5/4
r= OH = BH*4/9 =4
R= AB*BC*AC/2*S = AB*BC/2*BH = 15^2/2*9 =12,5
Проверка:
r*R= AB*BC*AC/2(AB+BC+AC)
15*15*24/2(15+15+24) = 50 = 4*12,5