Вариант 1 иначе говоря, может ли эта прогрессия состоять из ряда одинаковых членов? Запросто! Получится равносторонний треугольник. вариант 7 тут надо посмотреть. Очевидно, что сумма двух "младших" сторон треугольника должна быть больше третье стороны. Если при значении 7 такие три числа возможны, то и треугольник из них сообразим как нарисовать.
пусть меньшая сторона х, тогда средняя по длине5 будет 7х, а длиннейшая 49х
считаем неравенство х+7x>49x x+7x-49x>0 -57x>0
Ясен перец, что неравенство верно только при отрицательных Х, а значит треугольника такого нарисовать нельзя. кажется, все верно посчитано) Ура!)
На прямой "а" откладываем данный нам отрезок АЕ - биссектрису. Строим угол А треугольника. Для этого проводим окружность с центром в вершине А ДАННОГО нам угла произвольного (не очень большого) радиуса. Получаем "засечки" - точки G и F на сторонах данного нам угла. На прямой "а" чертим окружность с центром в точке А радиусом АG. Чертим окружность с центром в полученной точке G (пересечение окружности с прямой "а") радиусом GF. В точеке пересечения двух окружностей получаем точку F. Через точки А и F проводим прямую - получили первую сторону угла А. Поскольку АЕ - биссектриса, проводим прямую АО через точки А и вторую точку пересечения двух окружностей - точку F1. Получили угол ВАО при вершине А искомого треугольника, равного величине УДВОЕННОГО данного нам угла. В точке О на прямой АО строим угол, равный углу ВАО, но "зеркальный" ему. Для этого проводим окружность с центром в точке О радиусом АG. Чертим окружность с центром в полученной точке M (пересечение окружности с прямой AO) радиусом F1F. В точке пересечения двух окружностей получаем точку N. Через точки O и N проводим прямую - получили вторую сторону угла АОN, равного углу ВАО. Теперь через точку Е проводим прямую, параллельную прямой ОN. В точках пересечения этой прямой с прямыми АО и АF получаем вершины искомого треугольника С и В. Требуемый треугольник построен.
P.S. Построение прямой, параллельной данной ОN, проходящей через точку Е: 1. Проводим окружность с центром в точке N радиусом NE. 2. На прямой ON в месте пересечения с этой окружностью ставим точку Р. 3. Проводим окружность с центром в точке Р радиусом NE. 4. Проводим окружность с центром в точке Е радиусом NE. На пересечении этой и предыдущей окружностей получаем точку Q. 5. Через точки Е и Q проводим прямую ЕQ. Это и будет прямая, параллельная прямой ON.
12
Объяснение: