Дано:
∠MOH = ∠POH ; Луч НО – биссектриса ∠MHP .
∠MHO =∠PHO = (1/2)*∠MHP - - - - - - - - - - - - - - - - - - - -
1) Док -ать Δ MOH = Δ POH
- - - - - - - - - - - - - - - - - - - -
2) дополнительно : ∠MHO = 42⁰, ∠HMO = 28⁰, ∠НОМ = 110⁰. - - - - - - - - - - - - - - - - - - - -
Найти: ∠OHP - ? ; ∠HPO ; ∠НОР . * * *∠OHP ≡∠PHO * * *
|| ∠OHP - ? ; ∠HPO-? ∠НОР - ? ||
* * * ∠НОМ = 180°-(∠MHO+∠HMO) = 180°-(28⁰ +42⁰) =180°- 70⁰=110⁰
! Второй признак равенства треугольников :
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, такие треугольники равны.
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.