Любые три точки, не лежащие на одной прямой, можно соединить в треугольник. Соединив А, В, С - получим треугольник, вписанный в данную окружность. Хорда ВС - сторона этого треугольника. Сторону ВС можно вычислить по теореме синусов. ВС:sin (45)=2R ВС=2R*sin (45°) ВС=16*(√2/2)=8√2 Где бы ни располагалась точка А, угол САВ, как вписанный и равный 45°, будет равен половине центрального угла, а хорда, стягивающая дугу этого угла, будет одинаковой длины. Следовательно, треугольник АВС может быть как разносторонним, так и равнобедренным, угол ВАС - опираться на диаметр АС, который равен 16. d=a√2=16 ВС=a=8√2
Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость. АВ1 - проекция диагонали DB1 призмы на боковую грань АА1В1В. Значит угол АВ1D = α. Тогда сторона основания призмы (квадрата) АD=DB1*Sinα=а*Sinα. Диагональ основания ВD=а*Sinα√2. Высота призмы ВВ1=√(а²-2а²*Sin²α) или h=а√(1-2Sin²α). Объем призмы равен Vп=So*h, или а³Sin²α√(1-2Sin²α). При а=4 и Sin30° объем призмы равен Vп=64*(1/4)*√2/2=8√2. Объем описанного цилиндра равен So*h, где So=πR². R=BD/2=а*Sinα*(√2/2). So=πа²*Sin²α*(1/2). Объем цилиндра равен Vц=πа³*Sin²α*(1/2)*√(1-2Sin²α). При а=4 и Sin30° объем призмы равен Vц=π64*(1/4)*(1/2)*(√2/2)=π*4√2. ответ: Vп=8√2. Vц=π*4√2.
Соединив А, В, С - получим треугольник, вписанный в данную окружность. Хорда ВС - сторона этого треугольника.
Сторону ВС можно вычислить по теореме синусов.
ВС:sin (45)=2R
ВС=2R*sin (45°)
ВС=16*(√2/2)=8√2
Где бы ни располагалась точка А, угол САВ, как вписанный и равный 45°, будет равен половине центрального угла, а хорда, стягивающая дугу этого угла, будет одинаковой длины.
Следовательно, треугольник АВС может быть как разносторонним, так и равнобедренным, угол ВАС - опираться на диаметр АС, который равен 16. d=a√2=16
ВС=a=8√2