1. Точка Т – середина отрезка МР. Найдите координаты точки Р, если Т (-2;4) и М (-6; -7).
2. a) АВ – диаметр окружности с центром О. Найдите координаты центра окружности, если А (3; 3) и В (7;3). [2]
b) Запишите уравнение окружности, используя условия пункта а). [2]
с) Выполните построение данной окружности. [1]
3.Точки А(-3;-4), В(5;-4), С(5;8), D(-3;-1) – вершины прямоугольной трапеции с основаниями ВC и АD, АВ┴ ВС. Найдите среднюю линию трапеции
Сумма углов, прилежащих к боковой стороне, равна 180°
Меньший угол х, больший 3х, тогда х+2х=180
х=180/3
х=60
Меньший угол 60°, больший 2*60°=120°
Если опустить перпендикуляры из вершин тупых углов на большую сторону, то отрезки, отсекаемые ими равны половинам боковых сторон, т.к. прямоугольные треугольники, образованные высотами, боковыми сторонами и отрезками нижнего большего содержат угол в 30°, против которого лежат эти отрезки, т.е. 8/2=4/см/
а нижнее большее основание состоит из меньшего основания и двух отрезков по 4+4+4=12.
Периметр - сумма длин всех сторон, он равен
4+12+2*8=32/см/
средняя линия трапеции равна полусумме оснований. т.е. (12+4)/2=
8/см/