По теореме Пифагора находим на всякий случай катет АС = √10²-8² = 6.
Вспоминаем, что высота проведена к гипотенузе АВ и делит прямоугольный треугольник АВС на два прямоугольных треугольника АDC и ВDС. Они подобны между собой и подобны треугольнику АВС по трем углам.
Из подобия имеем АС/СD = АВ/СВ или 6/СВ = 10/8. Отсюда 10СD = 48, а СD = 4,8.
Из подобия имеем АС/АD = АВ/АС или 6/АD = 10/6. Отсюда 10АD = 36, а АD = 3,6.
Тогда DВ = 10-3,6 = 6,4
Площадь треугольника BCD = 1/2*СD*DB = 1/2*4,8*6,4 = 15,36см²
Площадь треугольника ADC = 1/2*СD*АD = 1/2*4,8*3,6 = 8,64 см²
Проверка:
Площадь треугольника АВС = 1/2*АС*СВ = 24см²
Сумма площадей треугольника BCD и треугольника ADC = 15,36см²+8,64см²=24см²
Рисунок прицепить не могу, попробую на пальцах. Значится рисуем тупоугольный треугольник abc, в котором тупой угол c, а сторона ac=bc и ∠a=∠b Из вершины b проводим высоту к продолженной стороне ac, т.е. высота лежит за пределами Δabc, точку пересечения с продолженной стороной обзовем k, получим высоту bk Теперь проведём биссектрису из вершины b к стороне ac, в точке пересечения поставим f. Получим угол между биссектрисой и высотой, т.е. ∠fbk=48° Примем ∠fbc=x, тогда ∠a=∠b=2x Чтобы найти ∠с нужно сначала найти ∠f, рассмотрим Δfbk: Сумма трёх углов =180°, значит ∠f=180-90-48=42° Теперь рассмотрим Δfbc и выразим ∠c: ∠c=180-42-x ∠c=138-x Теперь возвращаемся к нашему исходному Δabc и составляем уравнение: 2х+2х+(138-х)=180 4х+138-х=180 3х=42 х=14
∠a=∠b=2x Подставляем, получаем ∠a=∠b=28°
∠c=180-28-28 ∠c=124
ответ: углы треугольника равны 28, 28 и 124 градуса
По теореме Пифагора находим на всякий случай катет АС = √10²-8² = 6.
Вспоминаем, что высота проведена к гипотенузе АВ и делит прямоугольный треугольник АВС на два прямоугольных треугольника АDC и ВDС. Они подобны между собой и подобны треугольнику АВС по трем углам.
Из подобия имеем АС/СD = АВ/СВ или 6/СВ = 10/8. Отсюда 10СD = 48, а СD = 4,8.
Из подобия имеем АС/АD = АВ/АС или 6/АD = 10/6. Отсюда 10АD = 36, а АD = 3,6.
Тогда DВ = 10-3,6 = 6,4
Площадь треугольника BCD = 1/2*СD*DB = 1/2*4,8*6,4 = 15,36см²
Площадь треугольника ADC = 1/2*СD*АD = 1/2*4,8*3,6 = 8,64 см²
Проверка:
Площадь треугольника АВС = 1/2*АС*СВ = 24см²
Сумма площадей треугольника BCD и треугольника ADC = 15,36см²+8,64см²=24см²