1)Площадь параллелограмма 32, тогда одна сторона 32/4=8,
высота 5,(3)=5целых и одна треть=16/3. тогда другая сторона равна
32/(16/3)=32*3/16=6, а периметр (8+6)*2=28
2)Срабатывает свойство - если из одной точки к окружности провести касательные. то отрезки касательных до точек касания равны, если коэффициент пропорциональности равен х, то от бок. сторона треугольника равна 4х+3х=7х.
Т.к. основание равно 6, то 3х+3х=6, откуда х=1, значит, основание 6, боковые обе по 7*1=7, тогда периметр равен 7+7+6=20
Биссектриса прямого угла делит гипотенузу на отрезки, пропорциональные прилежащим сторонам, найдем по теор. Пифагора гипотенузу.
√(3²+6²)=√45=3√5
Если один отрезок гипотенузы, прилежащий к меньшему катету, равен х, то другой, равен (3√5-х)
Составим пропорцию и найдем биссектрису.
3/6=х/(3√5-х), 2х=3√5-х, откуда х=√5
Теперь найдем биссектрису по теореме косинусов. ПУсть она будет в,
тогда 3³+в²-2*3*в*cos45°=(√5)²
9+в²-2*3*√2в/2=5
в²-3√2в+4=0,
ПО теореме, обратной теореме Виета, найдем корни. это в₁=√2 и в₂=2√2
Некоторые задачи можно решать разными Ниже приводится вариант решения этой задачи. Из С проведем прямую, параллельную диагонали BD до пересечения с продолжением AD. Точку пересечения обозначим К. Площадь трапеции равна половине произведения высоты на сумму оснований. Из С опустим высоту СН на АD. S трап ABCD=СН*(BC+AD):2 Рассмотрим треугольник АСК. В нем DK параллельна ВС как продолжение основания трапеции. ВD=CK и параллельна ей по построению. Следовательно, четырехугольник DВСК - параллелограмм и DK=BС=7 см АК=АD+DK=13+7=20 см Площадь треугольника равна половине произведения высоты на основание S Δ АСК=СН*АК:2 Но АК равна сумме оснований трапеции. Следовательно, S трап ABCD=S Δ АСК=СН*АК:2 Площадь треугольника АСК можно найти двумя 1) - по формуле Герона. 2) обратив внимание на отношение сторон треугольника АСК. СК:АС:АК=3:4:5, и это отношение сторон прямоугольного"египетского" треугольника. Треугольник АСК - прямоугольный, ( можете проверить т. Пифагора) и его площадь равна половине произведения катетов: S Δ АСК=СК*АС:2 =16*12:2 S Δ АСК=96 см² Ясно, что, поскольку площадь трапеции равна площади этого треугольника, её площадь также равна 96 см². Можно из интереса найти эту площадь по ф. Герона и получить тот же результат. S трап ABCD= 96 см²
1)Площадь параллелограмма 32, тогда одна сторона 32/4=8,
высота 5,(3)=5целых и одна треть=16/3. тогда другая сторона равна
32/(16/3)=32*3/16=6, а периметр (8+6)*2=28
2)Срабатывает свойство - если из одной точки к окружности провести касательные. то отрезки касательных до точек касания равны, если коэффициент пропорциональности равен х, то от бок. сторона треугольника равна 4х+3х=7х.
Т.к. основание равно 6, то 3х+3х=6, откуда х=1, значит, основание 6, боковые обе по 7*1=7, тогда периметр равен 7+7+6=20
Биссектриса прямого угла делит гипотенузу на отрезки, пропорциональные прилежащим сторонам, найдем по теор. Пифагора гипотенузу.
√(3²+6²)=√45=3√5
Если один отрезок гипотенузы, прилежащий к меньшему катету, равен х, то другой, равен (3√5-х)
Составим пропорцию и найдем биссектрису.
3/6=х/(3√5-х), 2х=3√5-х, откуда х=√5
Теперь найдем биссектрису по теореме косинусов. ПУсть она будет в,
тогда 3³+в²-2*3*в*cos45°=(√5)²
9+в²-2*3*√2в/2=5
в²-3√2в+4=0,
ПО теореме, обратной теореме Виета, найдем корни. это в₁=√2 и в₂=2√2