Пусть есть 2 пересекающиеся прямые, КМ и РТ. Точку их пересечения обозначим О. По трем точкам - КРО или МТО можно построить только одну плоскость. Поскольку точки К и М лежат на одной прямой, а Р и Т тоже на одной прямой, то обе этих прямых целиком принадлежат этой плоскости.
Значит, плоскость КРО совпадает с плоскостью МТО, то есть обе прямые лежат в одной плоскости.
Значит, все 4 точки лежат в одной плоскости, а это противоречит условию.
Вывод: Если 4 точки не лежат в одной плоскости, то прямые, их соединяющие попарно, скрещивающиеся.
Боковые грани правильной пирамиды - равнобедренные треугольники с боковыми сторонами, равными боковому ребру и основанием, равным стороне основания пирамиды.
Площадь боковой поверхности - сумма площадей трех равных граней. Боковое ребро найдено =16.
Найти сторону АВ основания длина описанной окружности.
R=a:√3 - формула радиуса описанной окружности правильного треугольника, где а- сторона треугольника. ⇒
а=R•√3⇒
АВ=8•3=24
S ∆ AMB=MH•AB:2=MH•AH
Из ⊿ МОН по т.Пифагора
МН²=МО²+ОН²
ОН - радиус вписанной в правильный треугольник окружности и равен половине радиуса описанной,⇒
ОН=4√3
МН=√(МО²+ОН²)=√(64+48)=√112=4√7⇒
S бок=3•S∆ AMB=3•12•4√7=144√7 см²